Optimal. Leaf size=23 \[ \frac {e^{2 x}}{9+\log (3)-x (2 x+\log (3))+\log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.75, antiderivative size = 22, normalized size of antiderivative = 0.96, number of steps used = 2, number of rules used = 2, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6688, 2289} \begin {gather*} \frac {e^{2 x}}{-2 x^2-x \log (3)+9+\log (15)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2289
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (18-4 x^2+x (4-\log (9))+\log (675)\right )}{\left (9-2 x^2-x \log (3)+\log (15)\right )^2} \, dx\\ &=\frac {e^{2 x}}{9-2 x^2-x \log (3)+\log (15)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.06, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{2 x} \left (18+4 x-4 x^2+(3-2 x) \log (3)+2 \log (5)\right )}{81-36 x^2+4 x^4+\left (18-18 x-4 x^2+4 x^3\right ) \log (3)+\left (1-2 x+x^2\right ) \log ^2(3)+\left (18-4 x^2+(2-2 x) \log (3)\right ) \log (5)+\log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 25, normalized size = 1.09 \begin {gather*} -\frac {e^{\left (2 \, x\right )}}{2 \, x^{2} + {\left (x - 1\right )} \log \relax (3) - \log \relax (5) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 27, normalized size = 1.17 \begin {gather*} -\frac {e^{\left (2 \, x\right )}}{2 \, x^{2} + x \log \relax (3) - \log \relax (5) - \log \relax (3) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 28, normalized size = 1.22
method | result | size |
gosper | \(-\frac {{\mathrm e}^{2 x}}{x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9}\) | \(28\) |
norman | \(-\frac {{\mathrm e}^{2 x}}{x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9}\) | \(28\) |
risch | \(-\frac {{\mathrm e}^{2 x}}{x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9}\) | \(28\) |
default | \(\frac {36 \,{\mathrm e}^{2 x} \ln \relax (3)}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}+\frac {{\mathrm e}^{2 x} \ln \relax (3)^{2}}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}+\frac {2 \,{\mathrm e}^{2 x} \left (x \ln \relax (3)^{2}-\ln \relax (3)^{2}-\ln \relax (3) \ln \relax (5)+4 x \ln \relax (3)+4 x \ln \relax (5)-9 \ln \relax (3)+36 x \right )}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}+\frac {4 \,{\mathrm e}^{2 x} \left (x \ln \relax (3)-2 \ln \relax (3)-2 \ln \relax (5)-18\right )}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}-\frac {18 \,{\mathrm e}^{2 x} \left (\ln \relax (3)+4 x \right )}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}-\frac {12 \ln \relax (3) {\mathrm e}^{2 x} x}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}+\frac {2 \ln \relax (5) {\mathrm e}^{2 x} \ln \relax (3)}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}-\frac {8 \ln \relax (5) {\mathrm e}^{2 x} x}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}-\frac {2 \ln \relax (3)^{2} {\mathrm e}^{2 x} x}{\left (\ln \relax (3)^{2}+8 \ln \relax (3)+8 \ln \relax (5)+72\right ) \left (x \ln \relax (3)+2 x^{2}-\ln \relax (3)-\ln \relax (5)-9\right )}\) | \(465\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 1.17 \begin {gather*} -\frac {e^{\left (2 \, x\right )}}{2 \, x^{2} + x \log \relax (3) - \log \relax (5) - \log \relax (3) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,x}\,\left (4\,x+2\,\ln \relax (5)-\ln \relax (3)\,\left (2\,x-3\right )-4\,x^2+18\right )}{{\ln \relax (3)}^2\,\left (x^2-2\,x+1\right )-\ln \relax (5)\,\left (\ln \relax (3)\,\left (2\,x-2\right )+4\,x^2-18\right )-\ln \relax (3)\,\left (-4\,x^3+4\,x^2+18\,x-18\right )+{\ln \relax (5)}^2-36\,x^2+4\,x^4+81} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 24, normalized size = 1.04 \begin {gather*} - \frac {e^{2 x}}{2 x^{2} + x \log {\relax (3 )} - 9 - \log {\relax (5 )} - \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________