Optimal. Leaf size=32 \[ e^{e^{x^2}}-x+\frac {-e^x+x}{x}+2 x^2 (5+2 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 29, normalized size of antiderivative = 0.91, number of steps used = 8, number of rules used = 5, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {14, 6715, 2282, 2194, 2197} \begin {gather*} 4 x^3+10 x^2+e^{e^{x^2}}-x-\frac {e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2197
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{e^{x^2}+x^2} x+\frac {e^x-e^x x-x^2+20 x^3+12 x^4}{x^2}\right ) \, dx\\ &=2 \int e^{e^{x^2}+x^2} x \, dx+\int \frac {e^x-e^x x-x^2+20 x^3+12 x^4}{x^2} \, dx\\ &=\int \left (-1-\frac {e^x (-1+x)}{x^2}+20 x+12 x^2\right ) \, dx+\operatorname {Subst}\left (\int e^{e^x+x} \, dx,x,x^2\right )\\ &=-x+10 x^2+4 x^3-\int \frac {e^x (-1+x)}{x^2} \, dx+\operatorname {Subst}\left (\int e^x \, dx,x,e^{x^2}\right )\\ &=e^{e^{x^2}}-\frac {e^x}{x}-x+10 x^2+4 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 29, normalized size = 0.91 \begin {gather*} e^{e^{x^2}}-\frac {e^x}{x}-x+10 x^2+4 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 47, normalized size = 1.47 \begin {gather*} \frac {{\left (x e^{\left (x^{2} + e^{\left (x^{2}\right )}\right )} + {\left (4 \, x^{4} + 10 \, x^{3} - x^{2} - e^{x}\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-x^{2}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 57, normalized size = 1.78 \begin {gather*} \frac {{\left (4 \, x^{4} e^{\left (x^{2}\right )} + 10 \, x^{3} e^{\left (x^{2}\right )} - x^{2} e^{\left (x^{2}\right )} + x e^{\left (x^{2} + e^{\left (x^{2}\right )}\right )} - e^{\left (x^{2} + x\right )}\right )} e^{\left (-x^{2}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 0.84
method | result | size |
default | \(-x -\frac {{\mathrm e}^{x}}{x}+10 x^{2}+4 x^{3}+{\mathrm e}^{{\mathrm e}^{x^{2}}}\) | \(27\) |
risch | \(-x -\frac {{\mathrm e}^{x}}{x}+10 x^{2}+4 x^{3}+{\mathrm e}^{{\mathrm e}^{x^{2}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 28, normalized size = 0.88 \begin {gather*} 4 \, x^{3} + 10 \, x^{2} - x - {\rm Ei}\relax (x) + e^{\left (e^{\left (x^{2}\right )}\right )} + \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.36, size = 26, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{x^2}}-x-\frac {{\mathrm {e}}^x}{x}+10\,x^2+4\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 22, normalized size = 0.69 \begin {gather*} 4 x^{3} + 10 x^{2} - x + e^{e^{x^{2}}} - \frac {e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________