Optimal. Leaf size=21 \[ x^2 \left (1+e^{\frac {5}{x^2}}-x-x^4\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 5, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {14, 2288} \begin {gather*} -x^6-x^3+e^{\frac {5}{x^2}} x^2+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{\frac {5}{x^2}} \left (-5+x^2\right )}{x}-x \left (-2+3 x+6 x^4\right )\right ) \, dx\\ &=2 \int \frac {e^{\frac {5}{x^2}} \left (-5+x^2\right )}{x} \, dx-\int x \left (-2+3 x+6 x^4\right ) \, dx\\ &=e^{\frac {5}{x^2}} x^2-\int \left (-2 x+3 x^2+6 x^5\right ) \, dx\\ &=x^2+e^{\frac {5}{x^2}} x^2-x^3-x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 1.19 \begin {gather*} x^2+e^{\frac {5}{x^2}} x^2-x^3-x^6 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 24, normalized size = 1.14 \begin {gather*} -x^{6} - x^{3} + x^{2} e^{\left (\frac {5}{x^{2}}\right )} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 24, normalized size = 1.14 \begin {gather*} -x^{6} - x^{3} + x^{2} e^{\left (\frac {5}{x^{2}}\right )} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 1.19
method | result | size |
derivativedivides | \(x^{2}+{\mathrm e}^{\frac {5}{x^{2}}} x^{2}-x^{3}-x^{6}\) | \(25\) |
default | \(x^{2}+{\mathrm e}^{\frac {5}{x^{2}}} x^{2}-x^{3}-x^{6}\) | \(25\) |
norman | \(x^{2}+{\mathrm e}^{\frac {5}{x^{2}}} x^{2}-x^{3}-x^{6}\) | \(25\) |
risch | \(x^{2}+{\mathrm e}^{\frac {5}{x^{2}}} x^{2}-x^{3}-x^{6}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.36, size = 31, normalized size = 1.48 \begin {gather*} -x^{6} - x^{3} + x^{2} + 5 \, {\rm Ei}\left (\frac {5}{x^{2}}\right ) - 5 \, \Gamma \left (-1, -\frac {5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.23, size = 19, normalized size = 0.90 \begin {gather*} -x^2\,\left (x-{\mathrm {e}}^{\frac {5}{x^2}}+x^4-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.90 \begin {gather*} - x^{6} - x^{3} + x^{2} e^{\frac {5}{x^{2}}} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________