Optimal. Leaf size=19 \[ -e^{-7+x^2}+x+\frac {x^8}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6742, 2209, 2306, 2309, 2178} \begin {gather*} \frac {x^8}{\log ^2(x)}-e^{x^2-7}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2209
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{-7+x^2} x+\frac {-2 x^7+8 x^7 \log (x)+\log ^3(x)}{\log ^3(x)}\right ) \, dx\\ &=-\left (2 \int e^{-7+x^2} x \, dx\right )+\int \frac {-2 x^7+8 x^7 \log (x)+\log ^3(x)}{\log ^3(x)} \, dx\\ &=-e^{-7+x^2}+\int \left (1-\frac {2 x^7}{\log ^3(x)}+\frac {8 x^7}{\log ^2(x)}\right ) \, dx\\ &=-e^{-7+x^2}+x-2 \int \frac {x^7}{\log ^3(x)} \, dx+8 \int \frac {x^7}{\log ^2(x)} \, dx\\ &=-e^{-7+x^2}+x+\frac {x^8}{\log ^2(x)}-\frac {8 x^8}{\log (x)}-8 \int \frac {x^7}{\log ^2(x)} \, dx+64 \int \frac {x^7}{\log (x)} \, dx\\ &=-e^{-7+x^2}+x+\frac {x^8}{\log ^2(x)}-64 \int \frac {x^7}{\log (x)} \, dx+64 \operatorname {Subst}\left (\int \frac {e^{8 x}}{x} \, dx,x,\log (x)\right )\\ &=-e^{-7+x^2}+x+64 \text {Ei}(8 \log (x))+\frac {x^8}{\log ^2(x)}-64 \operatorname {Subst}\left (\int \frac {e^{8 x}}{x} \, dx,x,\log (x)\right )\\ &=-e^{-7+x^2}+x+\frac {x^8}{\log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 1.00 \begin {gather*} -e^{-7+x^2}+x+\frac {x^8}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 24, normalized size = 1.26 \begin {gather*} \frac {x^{8} + {\left (x - e^{\left (x^{2} - 7\right )}\right )} \log \relax (x)^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 32, normalized size = 1.68 \begin {gather*} \frac {{\left (x^{8} e^{7} + x e^{7} \log \relax (x)^{2} - e^{\left (x^{2}\right )} \log \relax (x)^{2}\right )} e^{\left (-7\right )}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 1.00
method | result | size |
default | \(x +\frac {x^{8}}{\ln \relax (x )^{2}}-{\mathrm e}^{x^{2}-7}\) | \(19\) |
risch | \(x +\frac {x^{8}}{\ln \relax (x )^{2}}-{\mathrm e}^{x^{2}-7}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 26, normalized size = 1.37 \begin {gather*} x - e^{\left (x^{2} - 7\right )} + 64 \, \Gamma \left (-1, -8 \, \log \relax (x)\right ) + 128 \, \Gamma \left (-2, -8 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.80, size = 18, normalized size = 0.95 \begin {gather*} x-{\mathrm {e}}^{x^2-7}+\frac {x^8}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.79 \begin {gather*} \frac {x^{8}}{\log {\relax (x )}^{2}} + x - e^{x^{2} - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________