Optimal. Leaf size=28 \[ x \left (\log (x)+\frac {x^4}{\log \left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{2 x} x^5+\left (-5 x^5+5 x^4 \log \left (4 e^{e^{2 x}+x}\right )\right ) \log \left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )+\left (-x-x \log (x)+\log \left (4 e^{e^{2 x}+x}\right ) (1+\log (x))\right ) \log ^2\left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )}{\left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right ) \log ^2\left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\log (x)+\frac {2 e^{2 x} x^5}{\left (x-\log \left (4 e^{e^{2 x}+x}\right )\right ) \log ^2\left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )}+\frac {5 x^4}{\log \left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )}\right ) \, dx\\ &=x+2 \int \frac {e^{2 x} x^5}{\left (x-\log \left (4 e^{e^{2 x}+x}\right )\right ) \log ^2\left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )} \, dx+5 \int \frac {x^4}{\log \left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )} \, dx+\int \log (x) \, dx\\ &=x \log (x)+2 \int \frac {e^{2 x} x^5}{\left (x-\log \left (4 e^{e^{2 x}+x}\right )\right ) \log ^2\left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )} \, dx+5 \int \frac {x^4}{\log \left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 28, normalized size = 1.00 \begin {gather*} x \log (x)+\frac {x^5}{\log \left (-x+\log \left (4 e^{e^{2 x}+x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 31, normalized size = 1.11 \begin {gather*} \frac {x^{5} + x \log \relax (x) \log \left (e^{\left (2 \, x\right )} + 2 \, \log \relax (2)\right )}{\log \left (e^{\left (2 \, x\right )} + 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 31, normalized size = 1.11 \begin {gather*} \frac {x^{5} + x \log \relax (x) \log \left (e^{\left (2 \, x\right )} + 2 \, \log \relax (2)\right )}{\log \left (e^{\left (2 \, x\right )} + 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 29, normalized size = 1.04
method | result | size |
risch | \(x \ln \relax (x )+\frac {x^{5}}{\ln \left (2 \ln \relax (2)+\ln \left ({\mathrm e}^{{\mathrm e}^{2 x}+x}\right )-x \right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 31, normalized size = 1.11 \begin {gather*} \frac {x^{5} + x \log \relax (x) \log \left (e^{\left (2 \, x\right )} + 2 \, \log \relax (2)\right )}{\log \left (e^{\left (2 \, x\right )} + 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.91, size = 19, normalized size = 0.68 \begin {gather*} \frac {x^5}{\ln \left ({\mathrm {e}}^{2\,x}+\ln \relax (4)\right )}+x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________