Optimal. Leaf size=15 \[ \frac {6+x^2}{-5+2 x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6-12 x-11 x^2+2 x^3+2 x^2 \log (x)}{25 x-20 x^2+4 x^3+\left (-10 x+4 x^2\right ) \log (x)+x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6-12 x-11 x^2+2 x^3+2 x^2 \log (x)}{x (5-2 x-\log (x))^2} \, dx\\ &=\int \left (\frac {-6-12 x-x^2-2 x^3}{x (-5+2 x+\log (x))^2}+\frac {2 x}{-5+2 x+\log (x)}\right ) \, dx\\ &=2 \int \frac {x}{-5+2 x+\log (x)} \, dx+\int \frac {-6-12 x-x^2-2 x^3}{x (-5+2 x+\log (x))^2} \, dx\\ &=2 \int \frac {x}{-5+2 x+\log (x)} \, dx+\int \left (-\frac {12}{(-5+2 x+\log (x))^2}-\frac {6}{x (-5+2 x+\log (x))^2}-\frac {x}{(-5+2 x+\log (x))^2}-\frac {2 x^2}{(-5+2 x+\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{(-5+2 x+\log (x))^2} \, dx\right )+2 \int \frac {x}{-5+2 x+\log (x)} \, dx-6 \int \frac {1}{x (-5+2 x+\log (x))^2} \, dx-12 \int \frac {1}{(-5+2 x+\log (x))^2} \, dx-\int \frac {x}{(-5+2 x+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 15, normalized size = 1.00 \begin {gather*} \frac {6+x^2}{-5+2 x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 15, normalized size = 1.00 \begin {gather*} \frac {x^{2} + 6}{2 \, x + \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.67, size = 15, normalized size = 1.00 \begin {gather*} \frac {x^{2} + 6}{2 \, x + \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 1.07
method | result | size |
norman | \(\frac {x^{2}+6}{2 x +\ln \relax (x )-5}\) | \(16\) |
risch | \(\frac {x^{2}+6}{2 x +\ln \relax (x )-5}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 15, normalized size = 1.00 \begin {gather*} \frac {x^{2} + 6}{2 \, x + \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.85, size = 15, normalized size = 1.00 \begin {gather*} \frac {x^2+6}{2\,x+\ln \relax (x)-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.80 \begin {gather*} \frac {x^{2} + 6}{2 x + \log {\relax (x )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________