Optimal. Leaf size=28 \[ \left (-e^x+e^{\frac {x \left (-2+e^4 x\right )}{\frac {5}{4}+x}}\right ) (5+x) \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-150-265 x-136 x^2-16 x^3\right )+e^{\frac {-8 x+4 e^4 x^2}{5+4 x}} \left (-175+16 x^2+e^4 \left (200 x+120 x^2+16 x^3\right )\right )}{25+40 x+16 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-150-265 x-136 x^2-16 x^3\right )+e^{\frac {-8 x+4 e^4 x^2}{5+4 x}} \left (-175+16 x^2+e^4 \left (200 x+120 x^2+16 x^3\right )\right )}{(5+4 x)^2} \, dx\\ &=\int \left (-e^x (6+x)+\frac {e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \left (-175+200 e^4 x+8 \left (2+15 e^4\right ) x^2+16 e^4 x^3\right )}{(5+4 x)^2}\right ) \, dx\\ &=-\int e^x (6+x) \, dx+\int \frac {e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \left (-175+200 e^4 x+8 \left (2+15 e^4\right ) x^2+16 e^4 x^3\right )}{(5+4 x)^2} \, dx\\ &=-e^x (6+x)+\int e^x \, dx+\int \left (e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \left (1+5 e^4\right )+e^{4+\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} x-\frac {75 e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \left (8+5 e^4\right )}{4 (5+4 x)^2}-\frac {5 e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \left (8+5 e^4\right )}{4 (5+4 x)}\right ) \, dx\\ &=e^x-e^x (6+x)+\left (1+5 e^4\right ) \int e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \, dx-\frac {1}{4} \left (5 \left (8+5 e^4\right )\right ) \int \frac {e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}}}{5+4 x} \, dx-\frac {1}{4} \left (75 \left (8+5 e^4\right )\right ) \int \frac {e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}}}{(5+4 x)^2} \, dx+\int e^{4+\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} x \, dx\\ &=e^x-e^x (6+x)+\left (1+5 e^4\right ) \int e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}} \, dx-\frac {1}{4} \left (5 \left (8+5 e^4\right )\right ) \int \frac {e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}}}{5+4 x} \, dx-\frac {1}{4} \left (75 \left (8+5 e^4\right )\right ) \int \frac {e^{\frac {4 x \left (-2+e^4 x\right )}{5+4 x}}}{(5+4 x)^2} \, dx+\int e^{\frac {4 \left (5+2 x+e^4 x^2\right )}{5+4 x}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 56, normalized size = 2.00 \begin {gather*} e^{-2-\frac {5 e^4}{2}} \left (-e^{2+\frac {5 e^4}{2}+x}+e^{\frac {20+e^4 \left (25+20 x+8 x^2\right )}{10+8 x}}\right ) (5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 32, normalized size = 1.14 \begin {gather*} -{\left (x + 5\right )} e^{x} + {\left (x + 5\right )} e^{\left (\frac {4 \, {\left (x^{2} e^{4} - 2 \, x\right )}}{4 \, x + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.74, size = 54, normalized size = 1.93 \begin {gather*} -x e^{x} + x e^{\left (\frac {4 \, {\left (x^{2} e^{4} - 2 \, x\right )}}{4 \, x + 5}\right )} - 5 \, e^{x} + 5 \, e^{\left (\frac {4 \, {\left (x^{2} e^{4} - 2 \, x\right )}}{4 \, x + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 31, normalized size = 1.11
method | result | size |
risch | \(\left (-x -5\right ) {\mathrm e}^{x}+\left (5+x \right ) {\mathrm e}^{\frac {4 x \left (x \,{\mathrm e}^{4}-2\right )}{4 x +5}}\) | \(31\) |
norman | \(\frac {25 x \,{\mathrm e}^{\frac {4 x^{2} {\mathrm e}^{4}-8 x}{4 x +5}}+4 x^{2} {\mathrm e}^{\frac {4 x^{2} {\mathrm e}^{4}-8 x}{4 x +5}}-25 \,{\mathrm e}^{x} x -4 \,{\mathrm e}^{x} x^{2}-25 \,{\mathrm e}^{x}+25 \,{\mathrm e}^{\frac {4 x^{2} {\mathrm e}^{4}-8 x}{4 x +5}}}{4 x +5}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {75 \, e^{\left (-\frac {5}{4}\right )} E_{2}\left (-x - \frac {5}{4}\right )}{2 \, {\left (4 \, x + 5\right )}} + \frac {{\left (16 \, x^{3} + 120 \, x^{2} + 225 \, x + 125\right )} e^{\left (x e^{4} + \frac {25 \, e^{4}}{4 \, {\left (4 \, x + 5\right )}} + \frac {10}{4 \, x + 5}\right )} - {\left (16 \, x^{3} e^{\left (\frac {5}{4} \, e^{4} + 2\right )} + 120 \, x^{2} e^{\left (\frac {5}{4} \, e^{4} + 2\right )} + 225 \, x e^{\left (\frac {5}{4} \, e^{4} + 2\right )}\right )} e^{x}}{16 \, x^{2} e^{\left (\frac {5}{4} \, e^{4} + 2\right )} + 40 \, x e^{\left (\frac {5}{4} \, e^{4} + 2\right )} + 25 \, e^{\left (\frac {5}{4} \, e^{4} + 2\right )}} + \int \frac {25 \, {\left (4 \, x + 45\right )} e^{x}}{64 \, x^{3} + 240 \, x^{2} + 300 \, x + 125}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 35, normalized size = 1.25 \begin {gather*} \left ({\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^4}{4\,x+5}-\frac {8\,x}{4\,x+5}}-{\mathrm {e}}^x\right )\,\left (x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 29, normalized size = 1.04 \begin {gather*} \left (- x - 5\right ) e^{x} + \left (x + 5\right ) e^{\frac {4 x^{2} e^{4} - 8 x}{4 x + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________