Optimal. Leaf size=15 \[ -e^{4+12 e^x} \log \left (\frac {4}{3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {12, 2282, 2194} \begin {gather*} -e^{12 e^x+4} \log \left (\frac {4}{3}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (12 \log \left (\frac {4}{3}\right )\right ) \int e^{4+12 e^x+x} \, dx\right )\\ &=-\left (\left (12 \log \left (\frac {4}{3}\right )\right ) \operatorname {Subst}\left (\int e^{4+12 x} \, dx,x,e^x\right )\right )\\ &=-e^{4+12 e^x} \log \left (\frac {4}{3}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} -e^{4+12 e^x} \log \left (\frac {4}{3}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 15, normalized size = 1.00 \begin {gather*} x e^{\left (12 \, e^{x} - \log \relax (x) + 4\right )} \log \left (\frac {3}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 10, normalized size = 0.67 \begin {gather*} e^{\left (12 \, e^{x} + 4\right )} \log \left (\frac {3}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 11, normalized size = 0.73
method | result | size |
default | \(\ln \left (\frac {3}{4}\right ) {\mathrm e}^{4} {\mathrm e}^{12 \,{\mathrm e}^{x}}\) | \(11\) |
norman | \(\left (\ln \relax (3)-2 \ln \relax (2)\right ) x \,{\mathrm e}^{-\ln \relax (x )+12 \,{\mathrm e}^{x}+4}\) | \(21\) |
risch | \({\mathrm e}^{4+12 \,{\mathrm e}^{x}} \ln \relax (3)-2 \,{\mathrm e}^{4+12 \,{\mathrm e}^{x}} \ln \relax (2)\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 10, normalized size = 0.67 \begin {gather*} e^{\left (12 \, e^{x} + 4\right )} \log \left (\frac {3}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.73, size = 18, normalized size = 1.20 \begin {gather*} -{\mathrm {e}}^4\,{\mathrm {e}}^{12\,{\mathrm {e}}^x}\,\left (2\,\ln \relax (2)-\ln \relax (3)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 1.00 \begin {gather*} \left (- 2 \log {\relax (2 )} + \log {\relax (3 )}\right ) e^{12 e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________