Optimal. Leaf size=30 \[ e^{-e^{x^2}-2 x} x (e+x) \left (5+\frac {1}{2} (2-x) x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{2} e^{-e^{x^2}-2 x} \left (20 x-14 x^2-8 x^3+2 x^4+e \left (10-16 x-7 x^2+2 x^3\right )+e^{x^2} \left (-20 x^3-4 x^4+2 x^5+e \left (-20 x^2-4 x^3+2 x^4\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{-e^{x^2}-2 x} \left (20 x-14 x^2-8 x^3+2 x^4+e \left (10-16 x-7 x^2+2 x^3\right )+e^{x^2} \left (-20 x^3-4 x^4+2 x^5+e \left (-20 x^2-4 x^3+2 x^4\right )\right )\right ) \, dx\\ &=\frac {1}{2} \int \left (20 e^{-e^{x^2}-2 x} x-14 e^{-e^{x^2}-2 x} x^2-8 e^{-e^{x^2}-2 x} x^3+2 e^{-e^{x^2}-2 x} x^4+2 e^{-e^{x^2}-2 x+x^2} x^2 (e+x) \left (-10-2 x+x^2\right )+e^{1-e^{x^2}-2 x} \left (10-16 x-7 x^2+2 x^3\right )\right ) \, dx\\ &=\frac {1}{2} \int e^{1-e^{x^2}-2 x} \left (10-16 x-7 x^2+2 x^3\right ) \, dx-4 \int e^{-e^{x^2}-2 x} x^3 \, dx-7 \int e^{-e^{x^2}-2 x} x^2 \, dx+10 \int e^{-e^{x^2}-2 x} x \, dx+\int e^{-e^{x^2}-2 x} x^4 \, dx+\int e^{-e^{x^2}-2 x+x^2} x^2 (e+x) \left (-10-2 x+x^2\right ) \, dx\\ &=\frac {1}{2} \int \left (10 e^{1-e^{x^2}-2 x}-16 e^{1-e^{x^2}-2 x} x-7 e^{1-e^{x^2}-2 x} x^2+2 e^{1-e^{x^2}-2 x} x^3\right ) \, dx-4 \int e^{-e^{x^2}-2 x} x^3 \, dx-7 \int e^{-e^{x^2}-2 x} x^2 \, dx+10 \int e^{-e^{x^2}-2 x} x \, dx+\int e^{-e^{x^2}-2 x} x^4 \, dx+\int \left (-10 e^{1-e^{x^2}-2 x+x^2} x^2-2 e^{-e^{x^2}-2 x+x^2} (5+e) x^3+(-2+e) e^{-e^{x^2}-2 x+x^2} x^4+e^{-e^{x^2}-2 x+x^2} x^5\right ) \, dx\\ &=-\left (\frac {7}{2} \int e^{1-e^{x^2}-2 x} x^2 \, dx\right )-4 \int e^{-e^{x^2}-2 x} x^3 \, dx+5 \int e^{1-e^{x^2}-2 x} \, dx-7 \int e^{-e^{x^2}-2 x} x^2 \, dx-8 \int e^{1-e^{x^2}-2 x} x \, dx+10 \int e^{-e^{x^2}-2 x} x \, dx-10 \int e^{1-e^{x^2}-2 x+x^2} x^2 \, dx+(-2+e) \int e^{-e^{x^2}-2 x+x^2} x^4 \, dx-(2 (5+e)) \int e^{-e^{x^2}-2 x+x^2} x^3 \, dx+\int e^{1-e^{x^2}-2 x} x^3 \, dx+\int e^{-e^{x^2}-2 x} x^4 \, dx+\int e^{-e^{x^2}-2 x+x^2} x^5 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 29, normalized size = 0.97 \begin {gather*} -\frac {1}{2} e^{-e^{x^2}-2 x} x (e+x) \left (-10-2 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 42, normalized size = 1.40 \begin {gather*} -\frac {1}{2} \, {\left (x^{4} - 2 \, x^{3} - 10 \, x^{2} + {\left (x^{3} - 2 \, x^{2} - 10 \, x\right )} e\right )} e^{\left (-2 \, x - e^{\left (x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 96, normalized size = 3.20 \begin {gather*} -\frac {1}{2} \, x^{4} e^{\left (-2 \, x - e^{\left (x^{2}\right )}\right )} - \frac {1}{2} \, x^{3} e^{\left (-2 \, x - e^{\left (x^{2}\right )} + 1\right )} + x^{3} e^{\left (-2 \, x - e^{\left (x^{2}\right )}\right )} + x^{2} e^{\left (-2 \, x - e^{\left (x^{2}\right )} + 1\right )} + 5 \, x^{2} e^{\left (-2 \, x - e^{\left (x^{2}\right )}\right )} + 5 \, x e^{\left (-2 \, x - e^{\left (x^{2}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 42, normalized size = 1.40
method | result | size |
risch | \(-\frac {\left (x^{2} {\mathrm e}+x^{3}-2 x \,{\mathrm e}-2 x^{2}-10 \,{\mathrm e}-10 x \right ) x \,{\mathrm e}^{-2 x -{\mathrm e}^{x^{2}}}}{2}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 39, normalized size = 1.30 \begin {gather*} -\frac {1}{2} \, {\left (x^{4} + x^{3} {\left (e - 2\right )} - 2 \, x^{2} {\left (e + 5\right )} - 10 \, x e\right )} e^{\left (-2 \, x - e^{\left (x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.88, size = 28, normalized size = 0.93 \begin {gather*} \frac {x\,{\mathrm {e}}^{-2\,x-{\mathrm {e}}^{x^2}}\,\left (x+\mathrm {e}\right )\,\left (-x^2+2\,x+10\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 82.20, size = 66, normalized size = 2.20 \begin {gather*} \frac {\left (- x^{4} e^{- x} - e x^{3} e^{- x} + 2 x^{3} e^{- x} + 2 e x^{2} e^{- x} + 10 x^{2} e^{- x} + 10 e x e^{- x}\right ) e^{- x - e^{x^{2}}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________