Optimal. Leaf size=26 \[ x \left (-1-4 x^2+\frac {1}{5 x^2 \left (e^x+x\right )}+\log (\log (5))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x-5 x^4-60 x^6+e^{2 x} \left (-5 x^2-60 x^4\right )+e^x \left (-1-x-10 x^3-120 x^5\right )+\left (5 e^{2 x} x^2+10 e^x x^3+5 x^4\right ) \log (\log (5))}{5 e^{2 x} x^2+10 e^x x^3+5 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x-60 x^6-e^x \left (1+x+120 x^5-10 x^3 (-1+\log (\log (5)))\right )-5 e^{2 x} x^2 \left (1+12 x^2-\log (\log (5))\right )+5 x^4 (-1+\log (\log (5)))}{5 x^2 \left (e^x+x\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-2 x-60 x^6-e^x \left (1+x+120 x^5-10 x^3 (-1+\log (\log (5)))\right )-5 e^{2 x} x^2 \left (1+12 x^2-\log (\log (5))\right )+5 x^4 (-1+\log (\log (5)))}{x^2 \left (e^x+x\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {-1+x}{x \left (e^x+x\right )^2}-\frac {1+x}{x^2 \left (e^x+x\right )}-5 \left (1+12 x^2-\log (\log (5))\right )\right ) \, dx\\ &=\frac {1}{5} \int \frac {-1+x}{x \left (e^x+x\right )^2} \, dx-\frac {1}{5} \int \frac {1+x}{x^2 \left (e^x+x\right )} \, dx-\int \left (1+12 x^2-\log (\log (5))\right ) \, dx\\ &=-4 x^3-x (1-\log (\log (5)))+\frac {1}{5} \int \left (\frac {1}{\left (e^x+x\right )^2}-\frac {1}{x \left (e^x+x\right )^2}\right ) \, dx-\frac {1}{5} \int \left (\frac {1}{x^2 \left (e^x+x\right )}+\frac {1}{x \left (e^x+x\right )}\right ) \, dx\\ &=-4 x^3-x (1-\log (\log (5)))+\frac {1}{5} \int \frac {1}{\left (e^x+x\right )^2} \, dx-\frac {1}{5} \int \frac {1}{x \left (e^x+x\right )^2} \, dx-\frac {1}{5} \int \frac {1}{x^2 \left (e^x+x\right )} \, dx-\frac {1}{5} \int \frac {1}{x \left (e^x+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 29, normalized size = 1.12 \begin {gather*} \frac {1}{5} \left (-20 x^3+\frac {1}{x \left (e^x+x\right )}+5 x (-1+\log (\log (5)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 52, normalized size = 2.00 \begin {gather*} -\frac {20 \, x^{5} + 5 \, x^{3} + 5 \, {\left (4 \, x^{4} + x^{2}\right )} e^{x} - 5 \, {\left (x^{3} + x^{2} e^{x}\right )} \log \left (\log \relax (5)\right ) - 1}{5 \, {\left (x^{2} + x e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 56, normalized size = 2.15 \begin {gather*} -\frac {20 \, x^{5} + 20 \, x^{4} e^{x} - 5 \, x^{3} \log \left (\log \relax (5)\right ) - 5 \, x^{2} e^{x} \log \left (\log \relax (5)\right ) + 5 \, x^{3} + 5 \, x^{2} e^{x} - 1}{5 \, {\left (x^{2} + x e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 1.00
method | result | size |
risch | \(-4 x^{3}+x \ln \left (\ln \relax (5)\right )-x +\frac {1}{5 x \left ({\mathrm e}^{x}+x \right )}\) | \(26\) |
norman | \(\frac {\frac {1}{5}+\left (-1+\ln \left (\ln \relax (5)\right )\right ) x^{3}+\left (-1+\ln \left (\ln \relax (5)\right )\right ) x^{2} {\mathrm e}^{x}-4 x^{5}-4 \,{\mathrm e}^{x} x^{4}}{\left ({\mathrm e}^{x}+x \right ) x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 49, normalized size = 1.88 \begin {gather*} -\frac {20 \, x^{5} - 5 \, x^{3} {\left (\log \left (\log \relax (5)\right ) - 1\right )} + 5 \, {\left (4 \, x^{4} - x^{2} {\left (\log \left (\log \relax (5)\right ) - 1\right )}\right )} e^{x} - 1}{5 \, {\left (x^{2} + x e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.83, size = 52, normalized size = 2.00 \begin {gather*} \frac {x^3\,\left (\ln \left ({\ln \relax (5)}^5\right )-5\right )-20\,x^4\,{\mathrm {e}}^x-20\,x^5+x^2\,{\mathrm {e}}^x\,\left (\ln \left ({\ln \relax (5)}^5\right )-5\right )+1}{5\,\left (x\,{\mathrm {e}}^x+x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 1.00 \begin {gather*} - 4 x^{3} + x \left (-1 + \log {\left (\log {\relax (5 )} \right )}\right ) + \frac {1}{5 x^{2} + 5 x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________