Optimal. Leaf size=27 \[ (5+x) \log \left (\frac {1+\frac {4}{1-x}}{i \pi +\log (3)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 48, normalized size of antiderivative = 1.78, number of steps used = 7, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {6728, 632, 31, 2486} \begin {gather*} -10 \log (1-x)+10 \log (5-x)-(5-x) \log \left (\frac {5-x}{(1-x) (\log (3)+i \pi )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 2486
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 (5+x)}{5-6 x+x^2}+\log \left (\frac {-5+x}{(-1+x) (i \pi +\log (3))}\right )\right ) \, dx\\ &=4 \int \frac {5+x}{5-6 x+x^2} \, dx+\int \log \left (\frac {-5+x}{(-1+x) (i \pi +\log (3))}\right ) \, dx\\ &=-\left ((5-x) \log \left (\frac {5-x}{(1-x) (i \pi +\log (3))}\right )\right )-4 \int \frac {1}{-1+x} \, dx-6 \int \frac {1}{-1+x} \, dx+10 \int \frac {1}{-5+x} \, dx\\ &=-10 \log (1-x)+10 \log (5-x)-(5-x) \log \left (\frac {5-x}{(1-x) (i \pi +\log (3))}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 41, normalized size = 1.52 \begin {gather*} -10 \log (1-x)+10 \log (5-x)+(-5+x) \log \left (\frac {-5+x}{(-1+x) (i \pi +\log (3))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 25, normalized size = 0.93 \begin {gather*} {\left (x + 5\right )} \log \left (\frac {x - 5}{-i \, \pi + i \, \pi x + {\left (x - 1\right )} \log \relax (3)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.85, size = 164, normalized size = 6.07 \begin {gather*} 4 \, {\left (-i \, \pi - \log \relax (3)\right )} {\left (\frac {\log \left (-\frac {-i \, x + 5 i}{\pi - \pi x + i \, x \log \relax (3) - i \, \log \relax (3)}\right )}{-i \, \pi - \frac {\pi ^{2} {\left (i \, x - 5 i\right )}}{\pi - \pi x + i \, x \log \relax (3) - i \, \log \relax (3)} - \frac {2 \, \pi {\left (x - 5\right )} \log \relax (3)}{\pi - \pi x + i \, x \log \relax (3) - i \, \log \relax (3)} - \frac {{\left (-i \, x + 5 i\right )} \log \relax (3)^{2}}{\pi - \pi x + i \, x \log \relax (3) - i \, \log \relax (3)} - \log \relax (3)} + \frac {3 \, \log \left (-\frac {-i \, x + 5 i}{\pi - \pi x + i \, x \log \relax (3) - i \, \log \relax (3)}\right )}{-2 i \, \pi - 2 \, \log \relax (3)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 35, normalized size = 1.30
method | result | size |
risch | \(\ln \left (\frac {x -5}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}\right ) x +5 \ln \left (x -5\right )-5 \ln \left (x -1\right )\) | \(35\) |
norman | \(\ln \left (\frac {x -5}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}\right ) x +5 \ln \left (\frac {x -5}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}\right )\) | \(44\) |
derivativedivides | \(-\frac {4 \left (-i \pi -\ln \relax (3)\right ) \left (\frac {2 \ln \left (i+\left (-i \ln \relax (3)+\pi \right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )\right ) \pi \ln \relax (3)}{-i \ln \relax (3)+\pi }+\frac {i \ln \left (i+\left (-i \ln \relax (3)+\pi \right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )\right ) \pi ^{2}}{-i \ln \relax (3)+\pi }-\frac {i \ln \left (i+\left (-i \ln \relax (3)+\pi \right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )\right ) \ln \relax (3)^{2}}{-i \ln \relax (3)+\pi }-\frac {2 \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \pi \ln \relax (3)}{-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i}-\frac {i \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \pi ^{2}}{-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i}+\frac {i \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \ln \relax (3)^{2}}{-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i}-\frac {i \ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \pi ^{3}}{\left (-i \ln \relax (3)+\pi \right )^{2}}+\frac {3 i \ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \pi \ln \relax (3)^{2}}{\left (-i \ln \relax (3)+\pi \right )^{2}}-\frac {3 \ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \ln \relax (3) \pi ^{2}}{\left (-i \ln \relax (3)+\pi \right )^{2}}+\frac {\ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \ln \relax (3)^{3}}{\left (-i \ln \relax (3)+\pi \right )^{2}}+\frac {5 i \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \pi }{2}+\frac {5 \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \ln \relax (3)}{2}\right )}{\left (\ln \relax (3)+i \pi \right )^{2}}\) | \(998\) |
default | \(-\frac {4 \left (-i \pi -\ln \relax (3)\right ) \left (\frac {2 \ln \left (i+\left (-i \ln \relax (3)+\pi \right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )\right ) \pi \ln \relax (3)}{-i \ln \relax (3)+\pi }+\frac {i \ln \left (i+\left (-i \ln \relax (3)+\pi \right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )\right ) \pi ^{2}}{-i \ln \relax (3)+\pi }-\frac {i \ln \left (i+\left (-i \ln \relax (3)+\pi \right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )\right ) \ln \relax (3)^{2}}{-i \ln \relax (3)+\pi }-\frac {2 \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \pi \ln \relax (3)}{-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i}-\frac {i \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \pi ^{2}}{-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i}+\frac {i \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \ln \relax (3)^{2}}{-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i}-\frac {i \ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \pi ^{3}}{\left (-i \ln \relax (3)+\pi \right )^{2}}+\frac {3 i \ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \pi \ln \relax (3)^{2}}{\left (-i \ln \relax (3)+\pi \right )^{2}}-\frac {3 \ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \ln \relax (3) \pi ^{2}}{\left (-i \ln \relax (3)+\pi \right )^{2}}+\frac {\ln \left (\frac {\left (-i \ln \relax (3)+\pi \right ) \left (-i \ln \relax (3) \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+\pi \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right )+i\right )}{\sqrt {\pi ^{2}+\ln \relax (3)^{2}}}\right ) \ln \relax (3)^{3}}{\left (-i \ln \relax (3)+\pi \right )^{2}}+\frac {5 i \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \pi }{2}+\frac {5 \ln \left (-\frac {4}{\left (x -1\right ) \left (\ln \relax (3)+i \pi \right )}+\frac {1}{\ln \relax (3)+i \pi }\right ) \ln \relax (3)}{2}\right )}{\left (\ln \relax (3)+i \pi \right )^{2}}\) | \(998\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 141, normalized size = 5.22 \begin {gather*} -x \log \left (i \, \pi + \log \relax (3)\right ) - \frac {1}{4} \, {\left (4 \, x + 5 \, \log \left (i \, \pi + \log \relax (3)\right ) - 5 \, \log \left (x - 5\right ) - 4\right )} \log \left (x - 1\right ) - \frac {5}{4} \, \log \left (x - 1\right )^{2} + \frac {1}{4} \, {\left (4 \, x + 5 i - 20\right )} \log \left (x - 5\right ) + \frac {5}{4} \, \log \left (x - 1\right ) \log \left (x - 5\right ) - \frac {5}{4} \, \log \left (x - 5\right )^{2} - \frac {5}{4} \, {\left (\log \left (x - 1\right ) - \log \left (x - 5\right )\right )} \log \left (\frac {x}{-i \, \pi + i \, \pi x + x \log \relax (3) - \log \relax (3)} - \frac {5}{-i \, \pi + i \, \pi x + x \log \relax (3) - \log \relax (3)}\right ) - 6 \, \log \left (x - 1\right ) + 10 \, \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 30, normalized size = 1.11 \begin {gather*} -10\,\mathrm {atanh}\left (\frac {x}{2}-\frac {3}{2}\right )+x\,\ln \left (\frac {x-5}{\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )\,\left (x-1\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 53, normalized size = 1.96 \begin {gather*} x \log {\left (\frac {x}{x \log {\relax (3 )} + i \pi x - \log {\relax (3 )} - i \pi } - \frac {5}{x \log {\relax (3 )} + i \pi x - \log {\relax (3 )} - i \pi } \right )} + 5 \log {\left (x - 5 \right )} - 5 \log {\left (x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________