Optimal. Leaf size=19 \[ \frac {1}{1+\frac {275}{12} x^2 \log (\log (4-\log (x)))} \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 107, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {6688, 12, 6686} \begin {gather*} \frac {12}{275 x^2 \log (\log (4-\log (x)))+12} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3300 (x+2 x (-4+\log (x)) \log (4-\log (x)) \log (\log (4-\log (x))))}{(4-\log (x)) \log (4-\log (x)) \left (12+275 x^2 \log (\log (4-\log (x)))\right )^2} \, dx\\ &=3300 \int \frac {x+2 x (-4+\log (x)) \log (4-\log (x)) \log (\log (4-\log (x)))}{(4-\log (x)) \log (4-\log (x)) \left (12+275 x^2 \log (\log (4-\log (x)))\right )^2} \, dx\\ &=\frac {12}{12+275 x^2 \log (\log (4-\log (x)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 1.00 \begin {gather*} \frac {12}{12+275 x^2 \log (\log (4-\log (x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 19, normalized size = 1.00 \begin {gather*} \frac {12}{275 \, x^{2} \log \left (\log \left (-\log \relax (x) + 4\right )\right ) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.73, size = 19, normalized size = 1.00 \begin {gather*} \frac {12}{275 \, x^{2} \log \left (\log \left (-\log \relax (x) + 4\right )\right ) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 1.05
method | result | size |
risch | \(\frac {12}{275 x^{2} \ln \left (\ln \left (-\ln \relax (x )+4\right )\right )+12}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 19, normalized size = 1.00 \begin {gather*} \frac {12}{275 \, x^{2} \log \left (\log \left (-\log \relax (x) + 4\right )\right ) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.81, size = 19, normalized size = 1.00 \begin {gather*} \frac {12}{275\,x^2\,\ln \left (\ln \left (4-\ln \relax (x)\right )\right )+12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 15, normalized size = 0.79 \begin {gather*} \frac {12}{275 x^{2} \log {\left (\log {\left (4 - \log {\relax (x )} \right )} \right )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________