Optimal. Leaf size=29 \[ e^{\frac {4 \log ^2(4) \left (x+\frac {2 \log (\log (4-x))}{4-x}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 5.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {\left (-16 x+4 x^2\right ) \log ^2(4)-8 \log ^2(4) \log (\log (4-x))}{-4 x+x^2}\right ) \left (-8 x \log ^2(4)+(-32+16 x) \log ^2(4) \log (4-x) \log (\log (4-x))\right )}{\left (16 x^2-8 x^3+x^4\right ) \log (4-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {\left (-16 x+4 x^2\right ) \log ^2(4)-8 \log ^2(4) \log (\log (4-x))}{-4 x+x^2}\right ) \left (-8 x \log ^2(4)+(-32+16 x) \log ^2(4) \log (4-x) \log (\log (4-x))\right )}{x^2 \left (16-8 x+x^2\right ) \log (4-x)} \, dx\\ &=\int \frac {\exp \left (\frac {\left (-16 x+4 x^2\right ) \log ^2(4)-8 \log ^2(4) \log (\log (4-x))}{-4 x+x^2}\right ) \left (-8 x \log ^2(4)+(-32+16 x) \log ^2(4) \log (4-x) \log (\log (4-x))\right )}{(-4+x)^2 x^2 \log (4-x)} \, dx\\ &=\int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) \left (-8 x \log ^2(4)+(-32+16 x) \log ^2(4) \log (4-x) \log (\log (4-x))\right )}{(4-x)^2 x^2 \log (4-x)} \, dx\\ &=\int \left (-\frac {8 \exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) \log ^2(4)}{(-4+x)^2 x \log (4-x)}+\frac {16 \exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) (-2+x) \log ^2(4) \log (\log (4-x))}{(-4+x)^2 x^2}\right ) \, dx\\ &=-\left (\left (8 \log ^2(4)\right ) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{(-4+x)^2 x \log (4-x)} \, dx\right )+\left (16 \log ^2(4)\right ) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) (-2+x) \log (\log (4-x))}{(-4+x)^2 x^2} \, dx\\ &=-\left (\left (8 \log ^2(4)\right ) \int \left (\frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{4 (-4+x)^2 \log (4-x)}-\frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{16 (-4+x) \log (4-x)}+\frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{16 x \log (4-x)}\right ) \, dx\right )+\left (16 \log ^2(4)\right ) \int \left (\frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) \log (\log (4-x))}{8 (-4+x)^2}-\frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) \log (\log (4-x))}{8 x^2}\right ) \, dx\\ &=\frac {1}{2} \log ^2(4) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{(-4+x) \log (4-x)} \, dx-\frac {1}{2} \log ^2(4) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{x \log (4-x)} \, dx-\left (2 \log ^2(4)\right ) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right )}{(-4+x)^2 \log (4-x)} \, dx+\left (2 \log ^2(4)\right ) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) \log (\log (4-x))}{(-4+x)^2} \, dx-\left (2 \log ^2(4)\right ) \int \frac {\exp \left (\frac {4 \log ^2(4) \left (-4 x+x^2-2 \log (\log (4-x))\right )}{(-4+x) x}\right ) \log (\log (4-x))}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 30, normalized size = 1.03 \begin {gather*} e^{4 \log ^2(4)} \log ^{-\frac {8 \log ^2(4)}{(-4+x) x}}(4-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 38, normalized size = 1.31 \begin {gather*} e^{\left (\frac {16 \, {\left ({\left (x^{2} - 4 \, x\right )} \log \relax (2)^{2} - 2 \, \log \relax (2)^{2} \log \left (\log \left (-x + 4\right )\right )\right )}}{x^{2} - 4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.67, size = 58, normalized size = 2.00 \begin {gather*} e^{\left (\frac {16 \, x^{2} \log \relax (2)^{2}}{x^{2} - 4 \, x} - \frac {64 \, x \log \relax (2)^{2}}{x^{2} - 4 \, x} - \frac {32 \, \log \relax (2)^{2} \log \left (\log \left (-x + 4\right )\right )}{x^{2} - 4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.10
method | result | size |
risch | \({\mathrm e}^{\frac {16 \ln \relax (2)^{2} \left (x^{2}-2 \ln \left (\ln \left (-x +4\right )\right )-4 x \right )}{\left (x -4\right ) x}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.20, size = 42, normalized size = 1.45 \begin {gather*} e^{\left (16 \, \log \relax (2)^{2} - \frac {8 \, \log \relax (2)^{2} \log \left (\log \left (-x + 4\right )\right )}{x - 4} + \frac {8 \, \log \relax (2)^{2} \log \left (\log \left (-x + 4\right )\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 50, normalized size = 1.72 \begin {gather*} {\mathrm {e}}^{\frac {16\,x\,{\ln \relax (2)}^2}{x-4}}\,{\mathrm {e}}^{-\frac {64\,{\ln \relax (2)}^2}{x-4}}\,{\ln \left (4-x\right )}^{\frac {32\,{\ln \relax (2)}^2}{4\,x-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.86, size = 34, normalized size = 1.17 \begin {gather*} e^{\frac {\left (16 x^{2} - 64 x\right ) \log {\relax (2 )}^{2} - 32 \log {\relax (2 )}^{2} \log {\left (\log {\left (4 - x \right )} \right )}}{x^{2} - 4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________