Optimal. Leaf size=29 \[ x \left (-2+\frac {\frac {1}{4} e^x (25+\log (x))+\log ^2(\log (x))}{-2+2 x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-16+32 x-16 x^2+e^x \left (-26-24 x+25 x^2\right )\right ) \log (x)+e^x \left (-1-x+x^2\right ) \log ^2(x)+(-8+8 x) \log (\log (x))-4 \log (x) \log ^2(\log (x))}{\left (8-16 x+8 x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-16+32 x-16 x^2+e^x \left (-26-24 x+25 x^2\right )\right ) \log (x)+e^x \left (-1-x+x^2\right ) \log ^2(x)+(-8+8 x) \log (\log (x))-4 \log (x) \log ^2(\log (x))}{8 (-1+x)^2 \log (x)} \, dx\\ &=\frac {1}{8} \int \frac {\left (-16+32 x-16 x^2+e^x \left (-26-24 x+25 x^2\right )\right ) \log (x)+e^x \left (-1-x+x^2\right ) \log ^2(x)+(-8+8 x) \log (\log (x))-4 \log (x) \log ^2(\log (x))}{(-1+x)^2 \log (x)} \, dx\\ &=\frac {1}{8} \int \left (-\frac {16}{(-1+x)^2}+\frac {32 x}{(-1+x)^2}-\frac {16 x^2}{(-1+x)^2}+\frac {e^x \left (-26-24 x+25 x^2-\log (x)-x \log (x)+x^2 \log (x)\right )}{(-1+x)^2}+\frac {8 \log (\log (x))}{(-1+x) \log (x)}-\frac {4 \log ^2(\log (x))}{(-1+x)^2}\right ) \, dx\\ &=-\frac {2}{1-x}+\frac {1}{8} \int \frac {e^x \left (-26-24 x+25 x^2-\log (x)-x \log (x)+x^2 \log (x)\right )}{(-1+x)^2} \, dx-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx-2 \int \frac {x^2}{(-1+x)^2} \, dx+4 \int \frac {x}{(-1+x)^2} \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ &=-\frac {2}{1-x}+\frac {1}{8} \int \left (\frac {e^x \left (-26-24 x+25 x^2\right )}{(-1+x)^2}+\frac {e^x \left (-1-x+x^2\right ) \log (x)}{(-1+x)^2}\right ) \, dx-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx-2 \int \left (1+\frac {1}{(-1+x)^2}+\frac {2}{-1+x}\right ) \, dx+4 \int \left (\frac {1}{(-1+x)^2}+\frac {1}{-1+x}\right ) \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ &=-2 x+\frac {1}{8} \int \frac {e^x \left (-26-24 x+25 x^2\right )}{(-1+x)^2} \, dx+\frac {1}{8} \int \frac {e^x \left (-1-x+x^2\right ) \log (x)}{(-1+x)^2} \, dx-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ &=-2 x+\frac {1}{8} e^x \log (x)-\frac {e^x \log (x)}{8 (1-x)}+\frac {1}{8} \int \left (25 e^x-\frac {25 e^x}{(-1+x)^2}+\frac {26 e^x}{-1+x}\right ) \, dx-\frac {1}{8} \int \frac {e^x}{-1+x} \, dx-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ &=-2 x-\frac {1}{8} e \text {Ei}(-1+x)+\frac {1}{8} e^x \log (x)-\frac {e^x \log (x)}{8 (1-x)}-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx+\frac {25 \int e^x \, dx}{8}-\frac {25}{8} \int \frac {e^x}{(-1+x)^2} \, dx+\frac {13}{4} \int \frac {e^x}{-1+x} \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ &=\frac {25 e^x}{8}-\frac {25 e^x}{8 (1-x)}-2 x+\frac {25}{8} e \text {Ei}(-1+x)+\frac {1}{8} e^x \log (x)-\frac {e^x \log (x)}{8 (1-x)}-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx-\frac {25}{8} \int \frac {e^x}{-1+x} \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ &=\frac {25 e^x}{8}-\frac {25 e^x}{8 (1-x)}-2 x+\frac {1}{8} e^x \log (x)-\frac {e^x \log (x)}{8 (1-x)}-\frac {1}{2} \int \frac {\log ^2(\log (x))}{(-1+x)^2} \, dx+\int \frac {\log (\log (x))}{(-1+x) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 33, normalized size = 1.14 \begin {gather*} \frac {x \left (16+25 e^x-16 x+e^x \log (x)+4 \log ^2(\log (x))\right )}{8 (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 35, normalized size = 1.21 \begin {gather*} \frac {x e^{x} \log \relax (x) + 4 \, x \log \left (\log \relax (x)\right )^{2} - 16 \, x^{2} + 25 \, x e^{x} + 16 \, x}{8 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 35, normalized size = 1.21 \begin {gather*} \frac {x e^{x} \log \relax (x) + 4 \, x \log \left (\log \relax (x)\right )^{2} - 16 \, x^{2} + 25 \, x e^{x} + 16 \, x}{8 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 38, normalized size = 1.31
method | result | size |
risch | \(\frac {x \ln \left (\ln \relax (x )\right )^{2}}{2 x -2}-\frac {x \left (-{\mathrm e}^{x} \ln \relax (x )+16 x -25 \,{\mathrm e}^{x}-16\right )}{8 \left (x -1\right )}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {13 \, e E_{2}\left (-x + 1\right )}{4 \, {\left (x - 1\right )}} + \frac {x e^{x} \log \relax (x) + 4 \, x \log \left (\log \relax (x)\right )^{2}}{8 \, {\left (x - 1\right )}} - \frac {2 \, {\left (x^{2} - x - 1\right )}}{x - 1} - \frac {2}{x - 1} + \frac {1}{8} \, \int \frac {{\left (25 \, x^{2} - 25 \, x + 1\right )} e^{x}}{x^{2} - 2 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.07, size = 66, normalized size = 2.28 \begin {gather*} {\mathrm {e}}^x\,\ln \relax (x)\,\left (\frac {1}{8\,\left (x-1\right )}+\frac {\frac {x}{8}-\frac {1}{8}}{x-1}\right )-{\ln \left (\ln \relax (x)\right )}^2\,\left (\frac {x-x^2}{2\,x\,{\left (x-1\right )}^2}-\frac {1}{2}\right )-2\,x+\frac {25\,x\,{\mathrm {e}}^x}{8\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 32, normalized size = 1.10 \begin {gather*} - 2 x + \frac {x \log {\left (\log {\relax (x )} \right )}^{2}}{2 x - 2} + \frac {\left (x \log {\relax (x )} + 25 x\right ) e^{x}}{8 x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________