Optimal. Leaf size=22 \[ \frac {9}{x^2}+3 x+\log (x)+\log (x-4 (1-\log (x))) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 3, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {6742, 14, 6684} \begin {gather*} \frac {9}{x^2}+3 x+\log (x)+\log (-x-4 \log (x)+4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6684
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-18+x^2+3 x^3}{x^3}+\frac {4+x}{x (-4+x+4 \log (x))}\right ) \, dx\\ &=\int \frac {-18+x^2+3 x^3}{x^3} \, dx+\int \frac {4+x}{x (-4+x+4 \log (x))} \, dx\\ &=\log (4-x-4 \log (x))+\int \left (3-\frac {18}{x^3}+\frac {1}{x}\right ) \, dx\\ &=\frac {9}{x^2}+3 x+\log (x)+\log (4-x-4 \log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 21, normalized size = 0.95 \begin {gather*} \frac {9}{x^2}+3 x+\log (x)+\log (4-x-4 \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.45, size = 29, normalized size = 1.32 \begin {gather*} \frac {3 \, x^{3} + x^{2} \log \left (x + 4 \, \log \relax (x) - 4\right ) + x^{2} \log \relax (x) + 9}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 19, normalized size = 0.86 \begin {gather*} 3 \, x + \frac {9}{x^{2}} + \log \left (x + 4 \, \log \relax (x) - 4\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 1.23
method | result | size |
norman | \(\frac {9+x^{2} \ln \relax (x )+3 x^{3}}{x^{2}}+\ln \left (x -4+4 \ln \relax (x )\right )\) | \(27\) |
risch | \(\frac {9+x^{2} \ln \relax (x )+3 x^{3}}{x^{2}}+\ln \left (\frac {x}{4}+\ln \relax (x )-1\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 21, normalized size = 0.95 \begin {gather*} \frac {3 \, {\left (x^{3} + 3\right )}}{x^{2}} + \log \relax (x) + \log \left (\frac {1}{4} \, x + \log \relax (x) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.81, size = 19, normalized size = 0.86 \begin {gather*} 3\,x+\ln \left (\frac {x}{4}+\ln \relax (x)-1\right )+\ln \relax (x)+\frac {9}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.91 \begin {gather*} 3 x + \log {\relax (x )} + \log {\left (\frac {x}{4} + \log {\relax (x )} - 1 \right )} + \frac {9}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________