Optimal. Leaf size=24 \[ e^{17+e^x+\frac {16}{-4+\frac {e^x}{3}+\log (2)}}+x \]
________________________________________________________________________________________
Rubi [F] time = 5.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16+\frac {e^{2 x}}{9}-8 \log (2)+\log ^2(2)+\frac {1}{3} e^x (-8+2 \log (2))+\exp \left (\frac {-52+\frac {17 e^x}{3}+17 \log (2)+e^x \left (-4+\frac {e^x}{3}+\log (2)\right )}{-4+\frac {e^x}{3}+\log (2)}\right ) \left (-\frac {16 e^x}{3}+e^x \left (16+\frac {e^{2 x}}{9}-8 \log (2)+\log ^2(2)+\frac {1}{3} e^x (-8+2 \log (2))\right )\right )}{16+\frac {e^{2 x}}{9}-8 \log (2)+\log ^2(2)+\frac {1}{3} e^x (-8+2 \log (2))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {9 \left (\frac {x^2}{9}+\frac {2}{3} x (-4+\log (2))+16 \left (1+\frac {1}{16} (-8+\log (2)) \log (2)\right )+\frac {1}{9} 2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}} x \left (96+x^2+6 x (-4+\log (2))-72 \log (2)+9 \log ^2(2)\right )\right )}{x (12-x-\log (8))^2} \, dx,x,e^x\right )\\ &=9 \operatorname {Subst}\left (\int \frac {\frac {x^2}{9}+\frac {2}{3} x (-4+\log (2))+16 \left (1+\frac {1}{16} (-8+\log (2)) \log (2)\right )+\frac {1}{9} 2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}} x \left (96+x^2+6 x (-4+\log (2))-72 \log (2)+9 \log ^2(2)\right )}{x (12-x-\log (8))^2} \, dx,x,e^x\right )\\ &=9 \operatorname {Subst}\left (\int \left (\frac {1}{9 x}+\frac {2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}} \left (x^2-6 x (4-\log (2))+3 \left (32-24 \log (2)+3 \log ^2(2)\right )\right )}{9 (12-x-\log (8))^2}\right ) \, dx,x,e^x\right )\\ &=x+\operatorname {Subst}\left (\int \frac {2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}} \left (x^2-6 x (4-\log (2))+3 \left (32-24 \log (2)+3 \log ^2(2)\right )\right )}{(12-x-\log (8))^2} \, dx,x,e^x\right )\\ &=x+\operatorname {Subst}\left (\int \left (2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}}+\frac {2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}} \left (-48+9 \log ^2(2)-6 \log (2) \log (8)+\log ^2(8)\right )}{(-12+x+\log (8))^2}\right ) \, dx,x,e^x\right )\\ &=x+\left (-48+9 \log ^2(2)-6 \log (2) \log (8)+\log ^2(8)\right ) \operatorname {Subst}\left (\int \frac {2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}}}{(-12+x+\log (8))^2} \, dx,x,e^x\right )+\operatorname {Subst}\left (\int 2^{\frac {51}{-12+x+\log (8)}} e^{\frac {-156+x^2+x (5+\log (8))}{-12+x+\log (8)}} \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 5.20, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {16+\frac {e^{2 x}}{9}-8 \log (2)+\log ^2(2)+\frac {1}{3} e^x (-8+2 \log (2))+e^{\frac {-52+\frac {17 e^x}{3}+17 \log (2)+e^x \left (-4+\frac {e^x}{3}+\log (2)\right )}{-4+\frac {e^x}{3}+\log (2)}} \left (-\frac {16 e^x}{3}+e^x \left (16+\frac {e^{2 x}}{9}-8 \log (2)+\log ^2(2)+\frac {1}{3} e^x (-8+2 \log (2))\right )\right )}{16+\frac {e^{2 x}}{9}-8 \log (2)+\log ^2(2)+\frac {1}{3} e^x (-8+2 \log (2))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 33, normalized size = 1.38 \begin {gather*} x + e^{\left (\frac {{\left (3 \, \log \relax (2) + 5\right )} e^{x} + e^{\left (2 \, x\right )} + 51 \, \log \relax (2) - 156}{e^{x} + 3 \, \log \relax (2) - 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.41, size = 141, normalized size = 5.88 \begin {gather*} \frac {1}{2} \, {\left (2 \, x e^{x} + 2 \, e^{x} \log \left (e^{x} + 3 \, \log \relax (2) - 12\right ) - 2 \, e^{x} \log \left (-e^{x} - 3 \, \log \relax (2) + 12\right ) + e^{\left (\frac {x e^{x} \log \relax (2) + 3 \, x \log \relax (2)^{2} + 3 \, e^{x} \log \relax (2)^{2} - 4 \, x e^{x} - 24 \, x \log \relax (2) + e^{\left (2 \, x\right )} \log \relax (2) - 24 \, e^{x} \log \relax (2) + 48 \, x - 4 \, e^{\left (2 \, x\right )} + 32 \, e^{x}}{e^{x} \log \relax (2) + 3 \, \log \relax (2)^{2} - 4 \, e^{x} - 24 \, \log \relax (2) + 48} + \frac {\log \relax (2)^{2} + 13 \, \log \relax (2) - 52}{\log \relax (2) - 4}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 35, normalized size = 1.46
method | result | size |
risch | \(x +{\mathrm e}^{\frac {{\mathrm e}^{2 x}+3 \,{\mathrm e}^{x} \ln \relax (2)+5 \,{\mathrm e}^{x}+51 \ln \relax (2)-156}{{\mathrm e}^{x}+3 \ln \relax (2)-12}}\) | \(35\) |
norman | \(\frac {\left (3 \ln \relax (2)-12\right ) x +\left (3 \ln \relax (2)-12\right ) {\mathrm e}^{\frac {\left (\frac {{\mathrm e}^{x}}{3}+\ln \relax (2)-4\right ) {\mathrm e}^{x}+\frac {17 \,{\mathrm e}^{x}}{3}+17 \ln \relax (2)-52}{\frac {{\mathrm e}^{x}}{3}+\ln \relax (2)-4}}+{\mathrm e}^{x} x +{\mathrm e}^{x} {\mathrm e}^{\frac {\left (\frac {{\mathrm e}^{x}}{3}+\ln \relax (2)-4\right ) {\mathrm e}^{x}+\frac {17 \,{\mathrm e}^{x}}{3}+17 \ln \relax (2)-52}{\frac {{\mathrm e}^{x}}{3}+\ln \relax (2)-4}}}{{\mathrm e}^{x}+3 \ln \relax (2)-12}\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.73, size = 261, normalized size = 10.88 \begin {gather*} {\left (\frac {x}{\log \relax (2)^{2} - 8 \, \log \relax (2) + 16} - \frac {\log \left (e^{x} + 3 \, \log \relax (2) - 12\right )}{\log \relax (2)^{2} - 8 \, \log \relax (2) + 16} + \frac {3}{{\left (\log \relax (2) - 4\right )} e^{x} + 3 \, \log \relax (2)^{2} - 24 \, \log \relax (2) + 48}\right )} \log \relax (2)^{2} - 8 \, {\left (\frac {x}{\log \relax (2)^{2} - 8 \, \log \relax (2) + 16} - \frac {\log \left (e^{x} + 3 \, \log \relax (2) - 12\right )}{\log \relax (2)^{2} - 8 \, \log \relax (2) + 16} + \frac {3}{{\left (\log \relax (2) - 4\right )} e^{x} + 3 \, \log \relax (2)^{2} - 24 \, \log \relax (2) + 48}\right )} \log \relax (2) + \frac {16 \, x}{\log \relax (2)^{2} - 8 \, \log \relax (2) + 16} + \frac {3 \, {\left (\log \relax (2) - 4\right )}}{e^{x} + 3 \, \log \relax (2) - 12} - \frac {6 \, \log \relax (2)}{e^{x} + 3 \, \log \relax (2) - 12} - \frac {16 \, \log \left (e^{x} + 3 \, \log \relax (2) - 12\right )}{\log \relax (2)^{2} - 8 \, \log \relax (2) + 16} + \frac {48}{{\left (\log \relax (2) - 4\right )} e^{x} + 3 \, \log \relax (2)^{2} - 24 \, \log \relax (2) + 48} + \frac {24}{e^{x} + 3 \, \log \relax (2) - 12} + e^{\left (\frac {48}{e^{x} + 3 \, \log \relax (2) - 12} + e^{x} + 17\right )} + \log \left (e^{x} + 3 \, \log \relax (2) - 12\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.40, size = 75, normalized size = 3.12 \begin {gather*} x+2^{\frac {{\mathrm {e}}^x}{\ln \relax (2)+\frac {{\mathrm {e}}^x}{3}-4}}\,2^{\frac {17}{\ln \relax (2)+\frac {{\mathrm {e}}^x}{3}-4}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x}}{3\,\left (\ln \relax (2)+\frac {{\mathrm {e}}^x}{3}-4\right )}-\frac {52}{\ln \relax (2)+\frac {{\mathrm {e}}^x}{3}-4}+\frac {5\,{\mathrm {e}}^x}{3\,\left (\ln \relax (2)+\frac {{\mathrm {e}}^x}{3}-4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.44, size = 39, normalized size = 1.62 \begin {gather*} x + e^{\frac {\left (\frac {e^{x}}{3} - 4 + \log {\relax (2 )}\right ) e^{x} + \frac {17 e^{x}}{3} - 52 + 17 \log {\relax (2 )}}{\frac {e^{x}}{3} - 4 + \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________