Optimal. Leaf size=19 \[ x \left (x+\log (x) \log \left (\frac {3 x}{2}-x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 11, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.169, Rules used = {6688, 2487, 29, 8, 6742, 43, 2357, 2295, 2316, 2315, 2556} \begin {gather*} x^2+x \log (x) \log \left (\frac {1}{2} (3-2 x) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 29
Rule 43
Rule 2295
Rule 2315
Rule 2316
Rule 2357
Rule 2487
Rule 2556
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x+\log \left (\frac {1}{2} (3-2 x) x\right )+\frac {\log (x) \left (-3+4 x+(-3+2 x) \log \left (\frac {1}{2} (3-2 x) x\right )\right )}{-3+2 x}\right ) \, dx\\ &=x^2+\int \log \left (\frac {1}{2} (3-2 x) x\right ) \, dx+\int \frac {\log (x) \left (-3+4 x+(-3+2 x) \log \left (\frac {1}{2} (3-2 x) x\right )\right )}{-3+2 x} \, dx\\ &=x^2-\frac {1}{2} (3-2 x) \log \left (\frac {1}{2} (3-2 x) x\right )+\frac {3}{2} \int \frac {1}{x} \, dx-2 \int 1 \, dx+\int \left (\frac {(-3+4 x) \log (x)}{-3+2 x}+\log (x) \log \left (\frac {1}{2} (3-2 x) x\right )\right ) \, dx\\ &=-2 x+x^2+\frac {3 \log (x)}{2}-\frac {1}{2} (3-2 x) \log \left (\frac {1}{2} (3-2 x) x\right )+\int \frac {(-3+4 x) \log (x)}{-3+2 x} \, dx+\int \log (x) \log \left (\frac {1}{2} (3-2 x) x\right ) \, dx\\ &=-2 x+x^2+\frac {3 \log (x)}{2}-\frac {1}{2} (3-2 x) \log \left (\frac {1}{2} (3-2 x) x\right )+x \log (x) \log \left (\frac {1}{2} (3-2 x) x\right )-\int \frac {(3-4 x) \log (x)}{3-2 x} \, dx+\int \left (2 \log (x)+\frac {3 \log (x)}{-3+2 x}\right ) \, dx-\int \log \left (\frac {1}{2} (3-2 x) x\right ) \, dx\\ &=-2 x+x^2+\frac {3 \log (x)}{2}+x \log (x) \log \left (\frac {1}{2} (3-2 x) x\right )-\frac {3}{2} \int \frac {1}{x} \, dx+2 \int 1 \, dx+2 \int \log (x) \, dx+3 \int \frac {\log (x)}{-3+2 x} \, dx-\int \left (2 \log (x)+\frac {3 \log (x)}{-3+2 x}\right ) \, dx\\ &=-2 x+x^2+2 x \log (x)+x \log (x) \log \left (\frac {1}{2} (3-2 x) x\right )+\frac {3}{2} \log \left (\frac {3}{2}\right ) \log (-3+2 x)-2 \int \log (x) \, dx+3 \int \frac {\log \left (\frac {2 x}{3}\right )}{-3+2 x} \, dx-3 \int \frac {\log (x)}{-3+2 x} \, dx\\ &=x^2+x \log (x) \log \left (\frac {1}{2} (3-2 x) x\right )-\frac {3}{2} \text {Li}_2\left (1-\frac {2 x}{3}\right )-3 \int \frac {\log \left (\frac {2 x}{3}\right )}{-3+2 x} \, dx\\ &=x^2+x \log (x) \log \left (\frac {1}{2} (3-2 x) x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 0.95 \begin {gather*} x \left (x+\log (x) \log \left (\frac {1}{2} (3-2 x) x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.78, size = 18, normalized size = 0.95 \begin {gather*} x \log \left (-x^{2} + \frac {3}{2} \, x\right ) \log \relax (x) + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 27, normalized size = 1.42 \begin {gather*} -x \log \relax (2) \log \relax (x) + x \log \relax (x)^{2} + x \log \relax (x) \log \left (-2 \, x + 3\right ) + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 19, normalized size = 1.00
method | result | size |
norman | \(x^{2}+\ln \relax (x ) \ln \left (-x^{2}+\frac {3}{2} x \right ) x\) | \(19\) |
default | \(-x \ln \relax (2) \ln \relax (x )+x \ln \relax (x ) \ln \left (-2 x^{2}+3 x \right )+x^{2}\) | \(26\) |
risch | \(\ln \relax (x ) x \ln \left (x -\frac {3}{2}\right )+x \ln \relax (x )^{2}-\frac {i \ln \relax (x ) x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -\frac {3}{2}\right )\right ) \mathrm {csgn}\left (i x \left (x -\frac {3}{2}\right )\right )}{2}+\frac {i \ln \relax (x ) x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -\frac {3}{2}\right )\right )^{2}}{2}-i \ln \relax (x ) x \pi \mathrm {csgn}\left (i x \left (x -\frac {3}{2}\right )\right )^{2}+\frac {i \ln \relax (x ) x \pi \,\mathrm {csgn}\left (i \left (x -\frac {3}{2}\right )\right ) \mathrm {csgn}\left (i x \left (x -\frac {3}{2}\right )\right )^{2}}{2}+\frac {i \ln \relax (x ) x \pi \mathrm {csgn}\left (i x \left (x -\frac {3}{2}\right )\right )^{3}}{2}+i \ln \relax (x ) x \pi -x \ln \relax (2) \ln \relax (x )+x^{2}\) | \(140\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 27, normalized size = 1.42 \begin {gather*} -x \log \relax (2) \log \relax (x) + x \log \relax (x)^{2} + x \log \relax (x) \log \left (-2 \, x + 3\right ) + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.95, size = 18, normalized size = 0.95 \begin {gather*} x^2+x\,\ln \left (\frac {3\,x}{2}-x^2\right )\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.95, size = 32, normalized size = 1.68 \begin {gather*} x^{2} + \left (x \log {\relax (x )} - \frac {1}{24}\right ) \log {\left (- x^{2} + \frac {3 x}{2} \right )} + \frac {\log {\left (2 x^{2} - 3 x \right )}}{24} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________