3.12.84
Optimal. Leaf size=19
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 19, normalized size of antiderivative =
1.00, number of steps used = 21, number of rules used = 11, integrand size = 65,
= 0.169, Rules used = {6688, 2487, 29, 8, 6742, 43, 2357, 2295, 2316, 2315, 2556}
Antiderivative was successfully verified.
[In]
Int[(-6*x + 4*x^2 + (-3 + 2*x)*Log[(3*x - 2*x^2)/2] + Log[x]*(-3 + 4*x + (-3 + 2*x)*Log[(3*x - 2*x^2)/2]))/(-3
+ 2*x),x]
[Out]
x^2 + x*Log[x]*Log[((3 - 2*x)*x)/2]
Rule 8
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2315
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]
Rule 2316
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[((a + b*Log[-((c*d)/e)])*Log[d + e*
x])/e, x] + Dist[b, Int[Log[-((e*x)/d)]/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[-((c*d)/e), 0]
Rule 2357
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
Rule 2487
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.), x_Symbol] :> Simp[((
a + b*x)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s)/b, x] + (Dist[(q*r*s*(b*c - a*d))/b, Int[Log[e*(f*(a + b*x)^p
*(c + d*x)^q)^r]^(s - 1)/(c + d*x), x], x] - Dist[r*s*(p + q), Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1
), x], x]) /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && NeQ[p + q, 0] && IGtQ[s, 0] &&
LtQ[s, 4]
Rule 2556
Int[Log[v_]*Log[w_], x_Symbol] :> Simp[x*Log[v]*Log[w], x] + (-Int[SimplifyIntegrand[(x*Log[w]*D[v, x])/v, x],
x] - Int[SimplifyIntegrand[(x*Log[v]*D[w, x])/w, x], x]) /; InverseFunctionFreeQ[v, x] && InverseFunctionFree
Q[w, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 0.95
Antiderivative was successfully verified.
[In]
Integrate[(-6*x + 4*x^2 + (-3 + 2*x)*Log[(3*x - 2*x^2)/2] + Log[x]*(-3 + 4*x + (-3 + 2*x)*Log[(3*x - 2*x^2)/2]
))/(-3 + 2*x),x]
[Out]
x*(x + Log[x]*Log[((3 - 2*x)*x)/2])
________________________________________________________________________________________
fricas [A] time = 1.78, size = 18, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-3)*log(-x^2+3/2*x)+4*x-3)*log(x)+(2*x-3)*log(-x^2+3/2*x)+4*x^2-6*x)/(2*x-3),x, algorithm="fri
cas")
[Out]
x*log(-x^2 + 3/2*x)*log(x) + x^2
________________________________________________________________________________________
giac [A] time = 0.38, size = 27, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-3)*log(-x^2+3/2*x)+4*x-3)*log(x)+(2*x-3)*log(-x^2+3/2*x)+4*x^2-6*x)/(2*x-3),x, algorithm="gia
c")
[Out]
-x*log(2)*log(x) + x*log(x)^2 + x*log(x)*log(-2*x + 3) + x^2
________________________________________________________________________________________
maple [A] time = 0.26, size = 19, normalized size = 1.00
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*x-3)*ln(-x^2+3/2*x)+4*x-3)*ln(x)+(2*x-3)*ln(-x^2+3/2*x)+4*x^2-6*x)/(2*x-3),x,method=_RETURNVERBOSE)
[Out]
x^2+ln(x)*ln(-x^2+3/2*x)*x
________________________________________________________________________________________
maxima [A] time = 0.54, size = 27, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-3)*log(-x^2+3/2*x)+4*x-3)*log(x)+(2*x-3)*log(-x^2+3/2*x)+4*x^2-6*x)/(2*x-3),x, algorithm="max
ima")
[Out]
-x*log(2)*log(x) + x*log(x)^2 + x*log(x)*log(-2*x + 3) + x^2
________________________________________________________________________________________
mupad [B] time = 0.95, size = 18, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log((3*x)/2 - x^2)*(2*x - 3) - 6*x + 4*x^2 + log(x)*(4*x + log((3*x)/2 - x^2)*(2*x - 3) - 3))/(2*x - 3),x
)
[Out]
x^2 + x*log((3*x)/2 - x^2)*log(x)
________________________________________________________________________________________
sympy [B] time = 0.95, size = 32, normalized size = 1.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-3)*ln(-x**2+3/2*x)+4*x-3)*ln(x)+(2*x-3)*ln(-x**2+3/2*x)+4*x**2-6*x)/(2*x-3),x)
[Out]
x**2 + (x*log(x) - 1/24)*log(-x**2 + 3*x/2) + log(2*x**2 - 3*x)/24
________________________________________________________________________________________