Optimal. Leaf size=20 \[ -3+e^{4 e^{-2 x} x^2}-3 x+x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x+2 x^2+4 e^{-2 x+4 e^{-2 x} x^2} (2-2 x) x^2}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3+2 x-8 e^{2 x \left (-1+2 e^{-2 x} x\right )} (-1+x) x\right ) \, dx\\ &=-3 x+x^2-8 \int e^{2 x \left (-1+2 e^{-2 x} x\right )} (-1+x) x \, dx\\ &=-3 x+x^2-8 \int \left (-e^{2 x \left (-1+2 e^{-2 x} x\right )} x+e^{2 x \left (-1+2 e^{-2 x} x\right )} x^2\right ) \, dx\\ &=-3 x+x^2+8 \int e^{2 x \left (-1+2 e^{-2 x} x\right )} x \, dx-8 \int e^{2 x \left (-1+2 e^{-2 x} x\right )} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 0.95 \begin {gather*} e^{4 e^{-2 x} x^2}-3 x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.88, size = 56, normalized size = 2.80 \begin {gather*} {\left ({\left (x^{2} - 3 \, x\right )} e^{\left (-2 \, x + \log \left (4 \, x^{2}\right )\right )} + e^{\left (-2 \, x + e^{\left (-2 \, x + \log \left (4 \, x^{2}\right )\right )} + \log \left (4 \, x^{2}\right )\right )}\right )} e^{\left (2 \, x - \log \left (4 \, x^{2}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{2} - 2 \, {\left (x - 1\right )} e^{\left (-2 \, x + e^{\left (-2 \, x + \log \left (4 \, x^{2}\right )\right )} + \log \left (4 \, x^{2}\right )\right )} - 3 \, x}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 0.90
method | result | size |
risch | \(x^{2}-3 x +{\mathrm e}^{4 x^{2} {\mathrm e}^{-2 x}}\) | \(18\) |
default | \(x^{2}-3 x +{\mathrm e}^{{\mathrm e}^{\ln \left (4 x^{2}\right )-2 x}}\) | \(20\) |
norman | \(x^{2}-3 x +{\mathrm e}^{{\mathrm e}^{\ln \left (4 x^{2}\right )-2 x}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 17, normalized size = 0.85 \begin {gather*} x^{2} - 3 \, x + e^{\left (4 \, x^{2} e^{\left (-2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.90, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{-2\,x}}-3\,x+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.85 \begin {gather*} x^{2} - 3 x + e^{4 x^{2} e^{- 2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________