Optimal. Leaf size=22 \[ \log \left (\frac {x}{\log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+\left (-4 x-2 x^2\right ) \log (5)+\left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}{\left (\left (-x+4 x^2+x^3\right ) \log (5)+x \log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-\frac {2 \left (1+x^2 \log (5)+x \log (25)\right )}{\left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}}{x} \, dx\\ &=\int \left (\frac {1}{x}-\frac {2 \left (1+x^2 \log (5)+x \log (25)\right )}{x \left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}\right ) \, dx\\ &=\log (x)-2 \int \frac {1+x^2 \log (5)+x \log (25)}{x \left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )} \, dx\\ &=\log (x)-2 \int \left (\frac {1}{x \left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}+\frac {x \log (5)}{\left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}+\frac {\log (25)}{\left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}\right ) \, dx\\ &=\log (x)-2 \int \frac {1}{x \left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )} \, dx-(2 \log (5)) \int \frac {x}{\left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )} \, dx-(2 \log (25)) \int \frac {1}{\left (-\log (5)+4 x \log (5)+x^2 \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.90, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-2+\left (-4 x-2 x^2\right ) \log (5)+\left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )}{\left (\left (-x+4 x^2+x^3\right ) \log (5)+x \log \left (x^2\right )\right ) \log \left (\left (-1+4 x+x^2\right ) \log (5)+\log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 27, normalized size = 1.23 \begin {gather*} \frac {1}{2} \, \log \left (x^{2}\right ) - \log \left (\log \left ({\left (x^{2} + 4 \, x - 1\right )} \log \relax (5) + \log \left (x^{2}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.69, size = 27, normalized size = 1.23 \begin {gather*} \log \relax (x) - \log \left (\log \left (x^{2} \log \relax (5) + 4 \, x \log \relax (5) - \log \relax (5) + \log \left (x^{2}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (\ln \left (x^{2}\right )+\left (x^{2}+4 x -1\right ) \ln \relax (5)\right ) \ln \left (\ln \left (x^{2}\right )+\left (x^{2}+4 x -1\right ) \ln \relax (5)\right )+\left (-2 x^{2}-4 x \right ) \ln \relax (5)-2}{\left (x \ln \left (x^{2}\right )+\left (x^{3}+4 x^{2}-x \right ) \ln \relax (5)\right ) \ln \left (\ln \left (x^{2}\right )+\left (x^{2}+4 x -1\right ) \ln \relax (5)\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 27, normalized size = 1.23 \begin {gather*} \log \relax (x) - \log \left (\log \left (x^{2} \log \relax (5) + 4 \, x \log \relax (5) - \log \relax (5) + 2 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.72, size = 23, normalized size = 1.05 \begin {gather*} \ln \relax (x)-\ln \left (\ln \left (\ln \left (x^2\right )+\ln \relax (5)\,\left (x^2+4\,x-1\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 22, normalized size = 1.00 \begin {gather*} \log {\relax (x )} - \log {\left (\log {\left (\left (x^{2} + 4 x - 1\right ) \log {\relax (5 )} + \log {\left (x^{2} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________