Optimal. Leaf size=21 \[ e^{-3 x}+\frac {1}{x^2}+x-x^2 \log \left (4+e^3\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {14, 2194} \begin {gather*} \frac {1}{x^2}+x^2 \left (-\log \left (4+e^3\right )\right )+x+e^{-3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3 e^{-3 x}+\frac {-2+x^3-2 x^4 \log \left (4+e^3\right )}{x^3}\right ) \, dx\\ &=-\left (3 \int e^{-3 x} \, dx\right )+\int \frac {-2+x^3-2 x^4 \log \left (4+e^3\right )}{x^3} \, dx\\ &=e^{-3 x}+\int \left (1-\frac {2}{x^3}-2 x \log \left (4+e^3\right )\right ) \, dx\\ &=e^{-3 x}+\frac {1}{x^2}+x-x^2 \log \left (4+e^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.00 \begin {gather*} e^{-3 x}+\frac {1}{x^2}+x-x^2 \log \left (4+e^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 30, normalized size = 1.43 \begin {gather*} -\frac {x^{4} \log \left (e^{3} + 4\right ) - x^{3} - x^{2} e^{\left (-3 \, x\right )} - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 30, normalized size = 1.43 \begin {gather*} -\frac {x^{4} \log \left (e^{3} + 4\right ) - x^{3} - x^{2} e^{\left (-3 \, x\right )} - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.95
method | result | size |
derivativedivides | \({\mathrm e}^{-3 x}+\frac {1}{x^{2}}-\ln \left (4+{\mathrm e}^{3}\right ) x^{2}+x\) | \(20\) |
default | \({\mathrm e}^{-3 x}+\frac {1}{x^{2}}-\ln \left (4+{\mathrm e}^{3}\right ) x^{2}+x\) | \(20\) |
risch | \({\mathrm e}^{-3 x}+\frac {1}{x^{2}}-\ln \left (4+{\mathrm e}^{3}\right ) x^{2}+x\) | \(20\) |
norman | \(\frac {1+x^{3}+x^{2} {\mathrm e}^{-3 x}-x^{4} \ln \left (4+{\mathrm e}^{3}\right )}{x^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 19, normalized size = 0.90 \begin {gather*} -x^{2} \log \left (e^{3} + 4\right ) + x + \frac {1}{x^{2}} + e^{\left (-3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 19, normalized size = 0.90 \begin {gather*} x+{\mathrm {e}}^{-3\,x}-x^2\,\ln \left ({\mathrm {e}}^3+4\right )+\frac {1}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 1.05 \begin {gather*} - x^{2} \log {\left (4 + e^{3} \right )} + x + e^{- 3 x} + \frac {1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________