Optimal. Leaf size=31 \[ \left (e^{x^2 \left (-x+\log \left (5 \left (-e^x+x\right )\right )\right )}+5 x\right ) \log (5+2 x) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 37, normalized size = 1.19 \begin {gather*} 5 x \log (5+2 x)+e^{-x^3} \left (-5 e^x+5 x\right )^{x^2} \log (5+2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 37, normalized size = 1.19 \begin {gather*} 5 \, x \log \left (2 \, x + 5\right ) + e^{\left (-x^{3} + x^{2} \log \left (5 \, x - 5 \, e^{x}\right )\right )} \log \left (2 \, x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {10 \, x^{2} + {\left (2 \, {\left (2 \, x^{3} + 5 \, x^{2} - {\left (2 \, x^{2} + 5 \, x\right )} e^{x}\right )} \log \left (5 \, x - 5 \, e^{x}\right ) \log \left (2 \, x + 5\right ) - {\left (6 \, x^{4} + 13 \, x^{3} - 5 \, x^{2} - 2 \, {\left (2 \, x^{3} + 5 \, x^{2}\right )} e^{x}\right )} \log \left (2 \, x + 5\right ) + 2 \, x - 2 \, e^{x}\right )} e^{\left (-x^{3} + x^{2} \log \left (5 \, x - 5 \, e^{x}\right )\right )} - 10 \, x e^{x} + 5 \, {\left (2 \, x^{2} - {\left (2 \, x + 5\right )} e^{x} + 5 \, x\right )} \log \left (2 \, x + 5\right )}{2 \, x^{2} - {\left (2 \, x + 5\right )} e^{x} + 5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.16
method | result | size |
risch | \(5 x \ln \left (5+2 x \right )+\ln \left (5+2 x \right ) \left (-5 \,{\mathrm e}^{x}+5 x \right )^{x^{2}} {\mathrm e}^{-x^{3}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 5 \, x \log \left (2 \, x + 5\right ) + \int \frac {{\left (2 \, {\left (2 \, x^{3} + 5 \, x^{2} - {\left (2 \, x^{2} + 5 \, x\right )} e^{x}\right )} 5^{\left (x^{2}\right )} \log \left (2 \, x + 5\right ) \log \left (-x + e^{x}\right ) - {\left ({\left ({\left (-4 i \, \pi - 4 \, \log \relax (5) + 13\right )} x^{3} + 6 \, x^{4} - 5 \, {\left (2 i \, \pi + 2 \, \log \relax (5) + 1\right )} x^{2} - 2 \, {\left ({\left (-2 i \, \pi - 2 \, \log \relax (5) + 5\right )} x^{2} + 2 \, x^{3} + 5 \, {\left (-i \, \pi - \log \relax (5)\right )} x\right )} e^{x}\right )} \log \left (2 \, x + 5\right ) - 2 \, x + 2 \, e^{x}\right )} 5^{\left (x^{2}\right )}\right )} e^{\left (-x^{3} + x^{2} \log \left (x - e^{x}\right )\right )}}{2 \, x^{2} - {\left (2 \, x + 5\right )} e^{x} + 5 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 30, normalized size = 0.97 \begin {gather*} \ln \left (2\,x+5\right )\,\left (5\,x+{\mathrm {e}}^{-x^3}\,{\left (5\,x-5\,{\mathrm {e}}^x\right )}^{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________