Optimal. Leaf size=29 \[ -2-x+\log \left (\frac {1}{3} e^{x+\left (2+e^x x\right )^2}\right )+\log \left (\frac {x}{5}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 25, normalized size of antiderivative = 0.86, number of steps used = 11, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {14, 2176, 2194, 2196} \begin {gather*} e^{2 x} x^2-4 e^x+4 e^x (x+1)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+4 e^x (1+x)+2 e^{2 x} x (1+x)\right ) \, dx\\ &=\log (x)+2 \int e^{2 x} x (1+x) \, dx+4 \int e^x (1+x) \, dx\\ &=4 e^x (1+x)+\log (x)+2 \int \left (e^{2 x} x+e^{2 x} x^2\right ) \, dx-4 \int e^x \, dx\\ &=-4 e^x+4 e^x (1+x)+\log (x)+2 \int e^{2 x} x \, dx+2 \int e^{2 x} x^2 \, dx\\ &=-4 e^x+e^{2 x} x+e^{2 x} x^2+4 e^x (1+x)+\log (x)-2 \int e^{2 x} x \, dx-\int e^{2 x} \, dx\\ &=-4 e^x-\frac {e^{2 x}}{2}+e^{2 x} x^2+4 e^x (1+x)+\log (x)+\int e^{2 x} \, dx\\ &=-4 e^x+e^{2 x} x^2+4 e^x (1+x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.62 \begin {gather*} 4 e^x x+e^{2 x} x^2+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 16, normalized size = 0.55 \begin {gather*} x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 16, normalized size = 0.55 \begin {gather*} x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.59
method | result | size |
default | \(\ln \relax (x )+4 \,{\mathrm e}^{x} x +{\mathrm e}^{2 x} x^{2}\) | \(17\) |
norman | \(\ln \relax (x )+4 \,{\mathrm e}^{x} x +{\mathrm e}^{2 x} x^{2}\) | \(17\) |
risch | \(\ln \relax (x )+4 \,{\mathrm e}^{x} x +{\mathrm e}^{2 x} x^{2}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 41, normalized size = 1.41 \begin {gather*} \frac {1}{2} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} + \frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x - 1\right )} e^{x} + 4 \, e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.87, size = 16, normalized size = 0.55 \begin {gather*} \ln \relax (x)+x^2\,{\mathrm {e}}^{2\,x}+4\,x\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 0.59 \begin {gather*} x^{2} e^{2 x} + 4 x e^{x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________