Optimal. Leaf size=36 \[ -1+4 \left (2-e^{2+\frac {x^2}{e^{5/x}+(5-x)^4}}\right )^2+x \]
________________________________________________________________________________________
Rubi [F] time = 92.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {390625+e^{10/x}-625000 x+437500 x^2-175000 x^3+43750 x^4-7000 x^5+700 x^6-40 x^7+x^8+e^{5/x} \left (1250-1000 x+300 x^2-40 x^3+2 x^4\right )+\exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \left (e^{5/x} (-80-32 x)-20000 x+8000 x^2-320 x^4+32 x^5\right )+\exp \left (\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \left (10000 x-4000 x^2+160 x^4-16 x^5+e^{5/x} (40+16 x)\right )}{390625+e^{10/x}-625000 x+437500 x^2-175000 x^3+43750 x^4-7000 x^5+700 x^6-40 x^7+x^8+e^{5/x} \left (1250-1000 x+300 x^2-40 x^3+2 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {390625+e^{10/x}+2 e^{5/x} (-5+x)^4-625000 x+437500 x^2-175000 x^3+43750 x^4-7000 x^5+700 x^6-40 x^7+x^8+\exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{e^{5/x}+(-5+x)^4}\right ) \left (32 (-5+x)^3 x (5+x)-16 e^{5/x} (5+2 x)\right )+8 \exp \left (\frac {2500+4 e^{5/x}-2000 x+602 x^2-80 x^3+4 x^4}{e^{5/x}+(-5+x)^4}\right ) \left (-2 (-5+x)^3 x (5+x)+e^{5/x} (5+2 x)\right )}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx\\ &=\int \left (\frac {390625}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {e^{10/x}}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {2 e^{5/x} (-5+x)^4}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {625000 x}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {437500 x^2}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {175000 x^3}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {43750 x^4}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {7000 x^5}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {700 x^6}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {40 x^7}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {x^8}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {8 \exp \left (\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \left (5 e^{5/x}+1250 x+2 e^{5/x} x-500 x^2+20 x^4-2 x^5\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {16 \exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \left (-5 e^{5/x}-1250 x-2 e^{5/x} x+500 x^2-20 x^4+2 x^5\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}\right ) \, dx\\ &=2 \int \frac {e^{5/x} (-5+x)^4}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+8 \int \frac {\exp \left (\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \left (5 e^{5/x}+1250 x+2 e^{5/x} x-500 x^2+20 x^4-2 x^5\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+16 \int \frac {\exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \left (-5 e^{5/x}-1250 x-2 e^{5/x} x+500 x^2-20 x^4+2 x^5\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-40 \int \frac {x^7}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+700 \int \frac {x^6}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-7000 \int \frac {x^5}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+43750 \int \frac {x^4}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-175000 \int \frac {x^3}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+390625 \int \frac {1}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+437500 \int \frac {x^2}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-625000 \int \frac {x}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+\int \frac {e^{10/x}}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+\int \frac {x^8}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx\\ &=2 \int \frac {e^{5/x} (5-x)^4}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+8 \int \frac {\exp \left (\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{e^{5/x}+(-5+x)^4}\right ) \left (-2 (-5+x)^3 x (5+x)+e^{5/x} (5+2 x)\right )}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+16 \int \frac {\exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{e^{5/x}+(-5+x)^4}\right ) \left (2 (-5+x)^3 x (5+x)-e^{5/x} (5+2 x)\right )}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-40 \int \frac {x^7}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+700 \int \frac {x^6}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-7000 \int \frac {x^5}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+43750 \int \frac {x^4}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-175000 \int \frac {x^3}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+390625 \int \frac {1}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+437500 \int \frac {x^2}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-625000 \int \frac {x}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+\int \frac {e^{10/x}}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+\int \frac {x^8}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx\\ &=2 \int \left (\frac {625 e^{5/x}}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {500 e^{5/x} x}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {150 e^{5/x} x^2}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {20 e^{5/x} x^3}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {e^{5/x} x^4}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}\right ) \, dx+8 \int \left (-\frac {\exp \left (\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{e^{5/x}+(-5+x)^4}\right ) (-5+x)^3 \left (-25+5 x+4 x^2\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}+\frac {\exp \left (\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{e^{5/x}+(-5+x)^4}\right ) (5+2 x)}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \, dx+16 \int \left (\frac {\exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{e^{5/x}+(-5+x)^4}\right ) (-5+x)^3 \left (-25+5 x+4 x^2\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2}-\frac {\exp \left (\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{e^{5/x}+(-5+x)^4}\right ) (5+2 x)}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4}\right ) \, dx-40 \int \frac {x^7}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+700 \int \frac {x^6}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-7000 \int \frac {x^5}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+43750 \int \frac {x^4}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-175000 \int \frac {x^3}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+390625 \int \frac {1}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+437500 \int \frac {x^2}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-625000 \int \frac {x}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+\int \frac {e^{10/x}}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+\int \frac {x^8}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx\\ &=2 \int \frac {e^{5/x} x^4}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-8 \int \frac {e^{\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{e^{5/x}+(-5+x)^4}} (-5+x)^3 \left (-25+5 x+4 x^2\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+8 \int \frac {e^{\frac {2 \left (1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4\right )}{e^{5/x}+(-5+x)^4}} (5+2 x)}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4} \, dx+16 \int \frac {e^{\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{e^{5/x}+(-5+x)^4}} (-5+x)^3 \left (-25+5 x+4 x^2\right )}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-16 \int \frac {e^{\frac {1250+2 e^{5/x}-1000 x+301 x^2-40 x^3+2 x^4}{e^{5/x}+(-5+x)^4}} (5+2 x)}{625+e^{5/x}-500 x+150 x^2-20 x^3+x^4} \, dx-40 \int \frac {x^7}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-40 \int \frac {e^{5/x} x^3}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+300 \int \frac {e^{5/x} x^2}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+700 \int \frac {x^6}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-1000 \int \frac {e^{5/x} x}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx+1250 \int \frac {e^{5/x}}{\left (625+e^{5/x}-500 x+150 x^2-20 x^3+x^4\right )^2} \, dx-7000 \int \frac {x^5}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+43750 \int \frac {x^4}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-175000 \int \frac {x^3}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+390625 \int \frac {1}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+437500 \int \frac {x^2}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx-625000 \int \frac {x}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+\int \frac {e^{10/x}}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx+\int \frac {x^8}{\left (e^{5/x}+(-5+x)^4\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 53, normalized size = 1.47 \begin {gather*} -16 e^{2+\frac {x^2}{e^{5/x}+(-5+x)^4}}+4 e^{4+\frac {2 x^2}{e^{5/x}+(-5+x)^4}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.86, size = 119, normalized size = 3.31 \begin {gather*} x + 4 \, e^{\left (\frac {2 \, {\left (2 \, x^{4} - 40 \, x^{3} + 301 \, x^{2} - 1000 \, x + 2 \, e^{\frac {5}{x}} + 1250\right )}}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + e^{\frac {5}{x}} + 625}\right )} - 16 \, e^{\left (\frac {2 \, x^{4} - 40 \, x^{3} + 301 \, x^{2} - 1000 \, x + 2 \, e^{\frac {5}{x}} + 1250}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + e^{\frac {5}{x}} + 625}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{8} - 40 \, x^{7} + 700 \, x^{6} - 7000 \, x^{5} + 43750 \, x^{4} - 175000 \, x^{3} + 437500 \, x^{2} - 8 \, {\left (2 \, x^{5} - 20 \, x^{4} + 500 \, x^{2} - {\left (2 \, x + 5\right )} e^{\frac {5}{x}} - 1250 \, x\right )} e^{\left (\frac {2 \, {\left (2 \, x^{4} - 40 \, x^{3} + 301 \, x^{2} - 1000 \, x + 2 \, e^{\frac {5}{x}} + 1250\right )}}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + e^{\frac {5}{x}} + 625}\right )} + 16 \, {\left (2 \, x^{5} - 20 \, x^{4} + 500 \, x^{2} - {\left (2 \, x + 5\right )} e^{\frac {5}{x}} - 1250 \, x\right )} e^{\left (\frac {2 \, x^{4} - 40 \, x^{3} + 301 \, x^{2} - 1000 \, x + 2 \, e^{\frac {5}{x}} + 1250}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + e^{\frac {5}{x}} + 625}\right )} + 2 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )} e^{\frac {5}{x}} - 625000 \, x + e^{\frac {10}{x}} + 390625}{x^{8} - 40 \, x^{7} + 700 \, x^{6} - 7000 \, x^{5} + 43750 \, x^{4} - 175000 \, x^{3} + 437500 \, x^{2} + 2 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )} e^{\frac {5}{x}} - 625000 \, x + e^{\frac {10}{x}} + 390625}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.37, size = 120, normalized size = 3.33
method | result | size |
risch | \(4 \,{\mathrm e}^{\frac {4 \,{\mathrm e}^{\frac {5}{x}}+4 x^{4}-80 x^{3}+602 x^{2}-2000 x +2500}{{\mathrm e}^{\frac {5}{x}}+x^{4}-20 x^{3}+150 x^{2}-500 x +625}}+x -16 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{\frac {5}{x}}+2 x^{4}-40 x^{3}+301 x^{2}-1000 x +1250}{{\mathrm e}^{\frac {5}{x}}+x^{4}-20 x^{3}+150 x^{2}-500 x +625}}\) | \(120\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 73, normalized size = 2.03 \begin {gather*} x + 4 \, e^{\left (\frac {2 \, x^{2}}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + e^{\frac {5}{x}} + 625} + 4\right )} - 16 \, e^{\left (\frac {x^{2}}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + e^{\frac {5}{x}} + 625} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.33, size = 386, normalized size = 10.72 \begin {gather*} x-16\,{\mathrm {e}}^{\frac {2\,x^4}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{-\frac {40\,x^3}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{\frac {301\,x^2}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{\frac {1250}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{-\frac {1000\,x}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{5/x}}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}+4\,{\mathrm {e}}^{\frac {4\,x^4}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{-\frac {80\,x^3}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{\frac {602\,x^2}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{\frac {2500}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{-\frac {2000\,x}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{5/x}}{{\mathrm {e}}^{5/x}-500\,x+150\,x^2-20\,x^3+x^4+625}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.22, size = 109, normalized size = 3.03 \begin {gather*} x + 4 e^{\frac {2 \left (2 x^{4} - 40 x^{3} + 301 x^{2} - 1000 x + 2 e^{\frac {5}{x}} + 1250\right )}{x^{4} - 20 x^{3} + 150 x^{2} - 500 x + e^{\frac {5}{x}} + 625}} - 16 e^{\frac {2 x^{4} - 40 x^{3} + 301 x^{2} - 1000 x + 2 e^{\frac {5}{x}} + 1250}{x^{4} - 20 x^{3} + 150 x^{2} - 500 x + e^{\frac {5}{x}} + 625}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________