Optimal. Leaf size=23 \[ \left (-1+\log (x)+\log \left (4-\log (x)+\left (-e^3+\log (x)\right )^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.34, antiderivative size = 31, normalized size of antiderivative = 1.35, number of steps used = 10, number of rules used = 4, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {6, 12, 6688, 6686} \begin {gather*} \left (-\log \left (\log ^2(x)-2 e^3 \log (x)-\log (x)+e^6+4\right )-\log (x)+1\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6+4 e^3-2 e^6+\left (4+2 e^6\right ) \log (x)-4 e^3 \log ^2(x)+2 \log ^3(x)+\left (6-4 e^3+2 e^6+\left (2-4 e^3\right ) \log (x)+2 \log ^2(x)\right ) \log \left (4+e^6+\left (-1-2 e^3\right ) \log (x)+\log ^2(x)\right )}{\left (4+e^6\right ) x+\left (-x-2 e^3 x\right ) \log (x)+x \log ^2(x)} \, dx\\ &=\operatorname {Subst}\left (\int \frac {2 \left (-3+2 e^3-e^6+2 x+e^6 x-2 e^3 x^2+x^3+3 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+e^6 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )\right )}{4+e^6-x-2 e^3 x+x^2} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {2 \left (-3+2 e^3-e^6+2 x+e^6 x-2 e^3 x^2+x^3+3 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+e^6 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )\right )}{4+e^6+\left (-1-2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {2 \left (-3+2 e^3-e^6+\left (2+e^6\right ) x-2 e^3 x^2+x^3+3 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+e^6 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )\right )}{4+e^6+\left (-1-2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {2 \left (-3+2 e^3-e^6+\left (2+e^6\right ) x-2 e^3 x^2+x^3+e^6 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+\left (3-2 e^3\right ) \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )\right )}{4+e^6+\left (-1-2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {2 \left (-3+2 e^3-e^6+\left (2+e^6\right ) x-2 e^3 x^2+x^3+\left (3-2 e^3+e^6\right ) \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )-2 e^3 x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )\right )}{4+e^6+\left (-1-2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {2 \left (-3+2 e^3-e^6+\left (2+e^6\right ) x-2 e^3 x^2+x^3+\left (3-2 e^3+e^6\right ) \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+\left (1-2 e^3\right ) x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )\right )}{4+e^6+\left (-1-2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=2 \operatorname {Subst}\left (\int \frac {-3+2 e^3-e^6+\left (2+e^6\right ) x-2 e^3 x^2+x^3+\left (3-2 e^3+e^6\right ) \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+\left (1-2 e^3\right ) x \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )+x^2 \log \left (4+e^6+\left (-1-2 e^3\right ) x+x^2\right )}{4+e^6+\left (-1-2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=2 \operatorname {Subst}\left (\int \frac {\left (3-2 e^3+e^6+\left (1-2 e^3\right ) x+x^2\right ) \left (-1+x+\log \left (4+e^6-x-2 e^3 x+x^2\right )\right )}{4+e^6-\left (1+2 e^3\right ) x+x^2} \, dx,x,\log (x)\right )\\ &=\left (1-\log (x)-\log \left (4+e^6-\log (x)-2 e^3 \log (x)+\log ^2(x)\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.17 \begin {gather*} \left (-1+\log (x)+\log \left (4+e^6-\left (1+2 e^3\right ) \log (x)+\log ^2(x)\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 55, normalized size = 2.39 \begin {gather*} 2 \, {\left (\log \relax (x) - 1\right )} \log \left (-{\left (2 \, e^{3} + 1\right )} \log \relax (x) + \log \relax (x)^{2} + e^{6} + 4\right ) + \log \left (-{\left (2 \, e^{3} + 1\right )} \log \relax (x) + \log \relax (x)^{2} + e^{6} + 4\right )^{2} + \log \relax (x)^{2} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.94, size = 74, normalized size = 3.22 \begin {gather*} \log \left (-2 \, e^{3} \log \relax (x) + \log \relax (x)^{2} + e^{6} - \log \relax (x) + 4\right )^{2} + 2 \, \log \left (-2 \, e^{3} \log \relax (x) + \log \relax (x)^{2} + e^{6} - \log \relax (x) + 4\right ) \log \relax (x) + \log \relax (x)^{2} - 2 \, \log \left (-2 \, e^{3} \log \relax (x) + \log \relax (x)^{2} + e^{6} - \log \relax (x) + 4\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 72, normalized size = 3.13
method | result | size |
risch | \(\ln \left (\ln \relax (x )^{2}+\left (-2 \,{\mathrm e}^{3}-1\right ) \ln \relax (x )+{\mathrm e}^{6}+4\right )^{2}+2 \ln \relax (x ) \ln \left (\ln \relax (x )^{2}+\left (-2 \,{\mathrm e}^{3}-1\right ) \ln \relax (x )+{\mathrm e}^{6}+4\right )+\ln \relax (x )^{2}-2 \ln \relax (x )-2 \ln \left (\ln \relax (x )^{2}+\left (-2 \,{\mathrm e}^{3}-1\right ) \ln \relax (x )+{\mathrm e}^{6}+4\right )\) | \(72\) |
default | error in gcdex: invalid arguments\ | N/A |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 55, normalized size = 2.39 \begin {gather*} 2 \, {\left (\log \relax (x) - 1\right )} \log \left (-{\left (2 \, e^{3} + 1\right )} \log \relax (x) + \log \relax (x)^{2} + e^{6} + 4\right ) + \log \left (-{\left (2 \, e^{3} + 1\right )} \log \relax (x) + \log \relax (x)^{2} + e^{6} + 4\right )^{2} + \log \relax (x)^{2} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.31, size = 74, normalized size = 3.22 \begin {gather*} {\ln \left ({\mathrm {e}}^6-\ln \relax (x)+{\ln \relax (x)}^2-2\,{\mathrm {e}}^3\,\ln \relax (x)+4\right )}^2+2\,\ln \left ({\mathrm {e}}^6-\ln \relax (x)+{\ln \relax (x)}^2-2\,{\mathrm {e}}^3\,\ln \relax (x)+4\right )\,\ln \relax (x)-2\,\ln \left ({\mathrm {e}}^6-\ln \relax (x)+{\ln \relax (x)}^2-2\,{\mathrm {e}}^3\,\ln \relax (x)+4\right )+{\ln \relax (x)}^2-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 88, normalized size = 3.83 \begin {gather*} \log {\relax (x )}^{2} + 2 \log {\relax (x )} \log {\left (\log {\relax (x )}^{2} + \left (- 2 e^{3} - 1\right ) \log {\relax (x )} + 4 + e^{6} \right )} - 2 \log {\relax (x )} + \log {\left (\log {\relax (x )}^{2} + \left (- 2 e^{3} - 1\right ) \log {\relax (x )} + 4 + e^{6} \right )}^{2} - 2 \log {\left (\log {\relax (x )}^{2} + \left (- 2 e^{3} - 1\right ) \log {\relax (x )} + 4 + e^{6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________