Optimal. Leaf size=22 \[ \frac {(-e+x) (-2 (2+2 x)+\log (x+\log (x)))}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e (-1-5 x)+x+x^2-4 x^3+\left (-4 e-4 x^2\right ) \log (x)+(e x+e \log (x)) \log (x+\log (x))}{x^3+x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e (-1-5 x)+x+x^2-4 x^3+\left (-4 e-4 x^2\right ) \log (x)+(e x+e \log (x)) \log (x+\log (x))}{x^2 (x+\log (x))} \, dx\\ &=\int \left (\frac {-e+(1-5 e) x+x^2-4 x^3-4 e \log (x)-4 x^2 \log (x)}{x^2 (x+\log (x))}+\frac {e \log (x+\log (x))}{x^2}\right ) \, dx\\ &=e \int \frac {\log (x+\log (x))}{x^2} \, dx+\int \frac {-e+(1-5 e) x+x^2-4 x^3-4 e \log (x)-4 x^2 \log (x)}{x^2 (x+\log (x))} \, dx\\ &=e \int \frac {\log (x+\log (x))}{x^2} \, dx+\int \left (-\frac {4 \left (e+x^2\right )}{x^2}-\frac {(e-x) (1+x)}{x^2 (x+\log (x))}\right ) \, dx\\ &=-\left (4 \int \frac {e+x^2}{x^2} \, dx\right )+e \int \frac {\log (x+\log (x))}{x^2} \, dx-\int \frac {(e-x) (1+x)}{x^2 (x+\log (x))} \, dx\\ &=-\left (4 \int \left (1+\frac {e}{x^2}\right ) \, dx\right )+e \int \frac {\log (x+\log (x))}{x^2} \, dx-\int \left (\frac {1}{-x-\log (x)}+\frac {e}{x^2 (x+\log (x))}+\frac {-1+e}{x (x+\log (x))}\right ) \, dx\\ &=\frac {4 e}{x}-4 x-(-1+e) \int \frac {1}{x (x+\log (x))} \, dx-e \int \frac {1}{x^2 (x+\log (x))} \, dx+e \int \frac {\log (x+\log (x))}{x^2} \, dx-\int \frac {1}{-x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 26, normalized size = 1.18 \begin {gather*} \frac {4 e}{x}-4 x+\log (x+\log (x))-\frac {e \log (x+\log (x))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 28, normalized size = 1.27 \begin {gather*} -\frac {4 \, x^{2} - {\left (x - e\right )} \log \left (x + \log \relax (x)\right ) - 4 \, e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 35, normalized size = 1.59 \begin {gather*} -\frac {4 \, x^{2} + e \log \left (x + \log \relax (x)\right ) - x \log \left (-x - \log \relax (x)\right ) - 4 \, e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.59
method | result | size |
risch | \(-\frac {{\mathrm e} \ln \left (x +\ln \relax (x )\right )}{x}+\frac {\ln \left (x +\ln \relax (x )\right ) x -4 x^{2}+4 \,{\mathrm e}}{x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 28, normalized size = 1.27 \begin {gather*} -\frac {4 \, x^{2} - {\left (x - e\right )} \log \left (x + \log \relax (x)\right ) - 4 \, e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 28, normalized size = 1.27 \begin {gather*} \ln \left (x+\ln \relax (x)\right )-4\,x+\frac {4\,\mathrm {e}}{x}-\frac {\ln \left (x+\ln \relax (x)\right )\,\mathrm {e}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 27, normalized size = 1.23 \begin {gather*} - 4 x + \log {\left (x + \log {\relax (x )} \right )} - \frac {e \log {\left (x + \log {\relax (x )} \right )}}{x} + \frac {4 e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________