Optimal. Leaf size=27 \[ \frac {1}{4} e^{e^x-x^3+\frac {1}{8} e^{x^2} x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 2274, 6706} \begin {gather*} \frac {1}{4} e^{\frac {1}{8} \left (-8 x^3+e^{x^2} x^3+8 e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3-8 \log (4)\right )} \left (8 e^x-24 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{8} \int \frac {1}{4} e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3\right )} \left (8 e^x-24 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{32} \int e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3\right )} \left (8 e^x-24 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{4} e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 27, normalized size = 1.00 \begin {gather*} \frac {1}{4} e^{e^x-x^3+\frac {1}{8} e^{x^2} x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (\frac {1}{8} \, x^{3} e^{\left (x^{2}\right )} - x^{3} + e^{x} - 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (\frac {1}{8} \, x^{3} e^{\left (x^{2}\right )} - x^{3} + e^{x} - 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.78
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {x^{3} {\mathrm e}^{x^{2}}}{8}+{\mathrm e}^{x}-x^{3}}}{4}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 20, normalized size = 0.74 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {1}{8} \, x^{3} e^{\left (x^{2}\right )} - x^{3} + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.93, size = 21, normalized size = 0.78 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^{x^2}}{8}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 19, normalized size = 0.70 \begin {gather*} \frac {e^{\frac {x^{3} e^{x^{2}}}{8} - x^{3} + e^{x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________