3.13.57 \(\int \frac {1}{8} e^{\frac {1}{8} (8 e^x-8 x^3+e^{x^2} x^3-8 \log (4))} (8 e^x-24 x^2+e^{x^2} (3 x^2+2 x^4)) \, dx\)

Optimal. Leaf size=27 \[ \frac {1}{4} e^{e^x-x^3+\frac {1}{8} e^{x^2} x^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 2274, 6706} \begin {gather*} \frac {1}{4} e^{\frac {1}{8} \left (-8 x^3+e^{x^2} x^3+8 e^x\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((8*E^x - 8*x^3 + E^x^2*x^3 - 8*Log[4])/8)*(8*E^x - 24*x^2 + E^x^2*(3*x^2 + 2*x^4)))/8,x]

[Out]

E^((8*E^x - 8*x^3 + E^x^2*x^3)/8)/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2274

Int[(u_.)*(F_)^((a_.)*(Log[z_]*(b_.) + (v_.))), x_Symbol] :> Int[u*F^(a*v)*z^(a*b*Log[F]), x] /; FreeQ[{F, a,
b}, x]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3-8 \log (4)\right )} \left (8 e^x-24 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{8} \int \frac {1}{4} e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3\right )} \left (8 e^x-24 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{32} \int e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3\right )} \left (8 e^x-24 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{4} e^{\frac {1}{8} \left (8 e^x-8 x^3+e^{x^2} x^3\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.42, size = 27, normalized size = 1.00 \begin {gather*} \frac {1}{4} e^{e^x-x^3+\frac {1}{8} e^{x^2} x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((8*E^x - 8*x^3 + E^x^2*x^3 - 8*Log[4])/8)*(8*E^x - 24*x^2 + E^x^2*(3*x^2 + 2*x^4)))/8,x]

[Out]

E^(E^x - x^3 + (E^x^2*x^3)/8)/4

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (\frac {1}{8} \, x^{3} e^{\left (x^{2}\right )} - x^{3} + e^{x} - 2 \, \log \relax (2)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*((2*x^4+3*x^2)*exp(x^2)+8*exp(x)-24*x^2)*exp(1/8*x^3*exp(x^2)+exp(x)-2*log(2)-x^3),x, algorithm=
"fricas")

[Out]

e^(1/8*x^3*e^(x^2) - x^3 + e^x - 2*log(2))

________________________________________________________________________________________

giac [A]  time = 0.45, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (\frac {1}{8} \, x^{3} e^{\left (x^{2}\right )} - x^{3} + e^{x} - 2 \, \log \relax (2)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*((2*x^4+3*x^2)*exp(x^2)+8*exp(x)-24*x^2)*exp(1/8*x^3*exp(x^2)+exp(x)-2*log(2)-x^3),x, algorithm=
"giac")

[Out]

e^(1/8*x^3*e^(x^2) - x^3 + e^x - 2*log(2))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 21, normalized size = 0.78




method result size



risch \(\frac {{\mathrm e}^{\frac {x^{3} {\mathrm e}^{x^{2}}}{8}+{\mathrm e}^{x}-x^{3}}}{4}\) \(21\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/8*((2*x^4+3*x^2)*exp(x^2)+8*exp(x)-24*x^2)*exp(1/8*x^3*exp(x^2)+exp(x)-2*ln(2)-x^3),x,method=_RETURNVERB
OSE)

[Out]

1/4*exp(1/8*x^3*exp(x^2)+exp(x)-x^3)

________________________________________________________________________________________

maxima [A]  time = 0.55, size = 20, normalized size = 0.74 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {1}{8} \, x^{3} e^{\left (x^{2}\right )} - x^{3} + e^{x}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*((2*x^4+3*x^2)*exp(x^2)+8*exp(x)-24*x^2)*exp(1/8*x^3*exp(x^2)+exp(x)-2*log(2)-x^3),x, algorithm=
"maxima")

[Out]

1/4*e^(1/8*x^3*e^(x^2) - x^3 + e^x)

________________________________________________________________________________________

mupad [B]  time = 0.93, size = 21, normalized size = 0.78 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^{x^2}}{8}}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(exp(x) - 2*log(2) + (x^3*exp(x^2))/8 - x^3)*(8*exp(x) + exp(x^2)*(3*x^2 + 2*x^4) - 24*x^2))/8,x)

[Out]

(exp(exp(x))*exp(-x^3)*exp((x^3*exp(x^2))/8))/4

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 19, normalized size = 0.70 \begin {gather*} \frac {e^{\frac {x^{3} e^{x^{2}}}{8} - x^{3} + e^{x}}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*((2*x**4+3*x**2)*exp(x**2)+8*exp(x)-24*x**2)*exp(1/8*x**3*exp(x**2)+exp(x)-2*ln(2)-x**3),x)

[Out]

exp(x**3*exp(x**2)/8 - x**3 + exp(x))/4

________________________________________________________________________________________