Optimal. Leaf size=25 \[ \frac {(4+x) \log \left (x+x^2\right )}{5 x \left (5+2 x^2\right )} \]
________________________________________________________________________________________
Rubi [C] time = 2.08, antiderivative size = 322, normalized size of antiderivative = 12.88, number of steps used = 99, number of rules used = 33, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {6741, 12, 6742, 741, 801, 635, 203, 260, 894, 639, 823, 1647, 2513, 2357, 2304, 2323, 2324, 4848, 2391, 2335, 2418, 2395, 36, 29, 31, 2409, 2394, 2393, 2413, 706, 1805, 21, 30} \begin {gather*} -\frac {2 x^2 \log (x)}{25 \left (2 x^2+5\right )}-\frac {8 x \log (x)}{25 \left (2 x^2+5\right )}+\frac {\log (x+1)}{5 \left (2 x^2+5\right )}-\frac {(5-8 x) (\log (x)+\log (x+1)-\log (x (x+1)))}{25 \left (2 x^2+5\right )}-\frac {4}{175} \log \left (2 x^2+5\right )+\frac {4 \log \left (\sqrt {10}+2 i x\right )}{25 \left (2+i \sqrt {10}\right )}+\frac {\log (x)}{25}+\frac {4 \log (x+1)}{25 \left (-2 x+i \sqrt {10}\right )}-\frac {4 \log (x+1)}{25 \left (2 x+i \sqrt {10}\right )}-\frac {4 \log (x+1)}{25 \left (2+i \sqrt {10}\right )}-\frac {4 \log (x+1)}{25 \left (2-i \sqrt {10}\right )}+\frac {8}{175} \log (x+1)+\frac {4 \log \left (2 x+i \sqrt {10}\right )}{25 \left (2-i \sqrt {10}\right )}+\frac {4 \log (x)}{25 x}+\frac {4 \log (x+1)}{25 x}-\frac {4 (\log (x)+\log (x+1)-\log (x (x+1)))}{25 x}-\frac {4}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 21
Rule 29
Rule 30
Rule 31
Rule 36
Rule 203
Rule 260
Rule 635
Rule 639
Rule 706
Rule 741
Rule 801
Rule 823
Rule 894
Rule 1647
Rule 1805
Rule 2304
Rule 2323
Rule 2324
Rule 2335
Rule 2357
Rule 2391
Rule 2393
Rule 2394
Rule 2395
Rule 2409
Rule 2413
Rule 2418
Rule 2513
Rule 4848
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20+45 x+18 x^2+18 x^3+4 x^4+\left (-20-20 x-24 x^2-28 x^3-4 x^4\right ) \log \left (x+x^2\right )}{5 x^2 (1+x) \left (5+2 x^2\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {20+45 x+18 x^2+18 x^3+4 x^4+\left (-20-20 x-24 x^2-28 x^3-4 x^4\right ) \log \left (x+x^2\right )}{x^2 (1+x) \left (5+2 x^2\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {18}{(1+x) \left (5+2 x^2\right )^2}+\frac {20}{x^2 (1+x) \left (5+2 x^2\right )^2}+\frac {45}{x (1+x) \left (5+2 x^2\right )^2}+\frac {18 x}{(1+x) \left (5+2 x^2\right )^2}+\frac {4 x^2}{(1+x) \left (5+2 x^2\right )^2}-\frac {4 \left (5+6 x^2+x^3\right ) \log (x (1+x))}{x^2 \left (5+2 x^2\right )^2}\right ) \, dx\\ &=\frac {4}{5} \int \frac {x^2}{(1+x) \left (5+2 x^2\right )^2} \, dx-\frac {4}{5} \int \frac {\left (5+6 x^2+x^3\right ) \log (x (1+x))}{x^2 \left (5+2 x^2\right )^2} \, dx+\frac {18}{5} \int \frac {1}{(1+x) \left (5+2 x^2\right )^2} \, dx+\frac {18}{5} \int \frac {x}{(1+x) \left (5+2 x^2\right )^2} \, dx+4 \int \frac {1}{x^2 (1+x) \left (5+2 x^2\right )^2} \, dx+9 \int \frac {1}{x (1+x) \left (5+2 x^2\right )^2} \, dx\\ &=-\frac {9 (1-x)}{35 \left (5+2 x^2\right )}+\frac {4 (5+2 x)}{175 \left (5+2 x^2\right )}-\frac {9}{350} \int \frac {10-10 x}{(1+x) \left (5+2 x^2\right )} \, dx-\frac {1}{25} \int \frac {-\frac {10}{7}+\frac {10 x}{7}}{(1+x) \left (5+2 x^2\right )} \, dx-\frac {9}{175} \int \frac {-12-2 x}{(1+x) \left (5+2 x^2\right )} \, dx-\frac {4}{5} \int \frac {\left (5+6 x^2+x^3\right ) \log (x)}{x^2 \left (5+2 x^2\right )^2} \, dx-\frac {4}{5} \int \frac {\left (5+6 x^2+x^3\right ) \log (1+x)}{x^2 \left (5+2 x^2\right )^2} \, dx+4 \int \left (\frac {1}{25 x^2}-\frac {1}{25 x}+\frac {1}{49 (1+x)}+\frac {4 (-1+x)}{35 \left (5+2 x^2\right )^2}+\frac {48 (-1+x)}{1225 \left (5+2 x^2\right )}\right ) \, dx+9 \int \left (\frac {1}{25 x}-\frac {1}{49 (1+x)}-\frac {2 (5+2 x)}{35 \left (5+2 x^2\right )^2}-\frac {2 (25+24 x)}{1225 \left (5+2 x^2\right )}\right ) \, dx+\frac {1}{5} (4 (\log (x)+\log (1+x)-\log (x (1+x)))) \int \frac {5+6 x^2+x^3}{x^2 \left (5+2 x^2\right )^2} \, dx\\ &=-\frac {4}{25 x}-\frac {9 (1-x)}{35 \left (5+2 x^2\right )}+\frac {4 (5+2 x)}{175 \left (5+2 x^2\right )}+\frac {\log (x)}{5}-\frac {5}{49} \log (1+x)-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {18 \int \frac {25+24 x}{5+2 x^2} \, dx}{1225}-\frac {9}{350} \int \left (\frac {20}{7 (1+x)}-\frac {10 (3+4 x)}{7 \left (5+2 x^2\right )}\right ) \, dx-\frac {1}{25} \int \left (-\frac {20}{49 (1+x)}+\frac {10 (3+4 x)}{49 \left (5+2 x^2\right )}\right ) \, dx-\frac {9}{175} \int \left (-\frac {10}{7 (1+x)}+\frac {2 (-17+10 x)}{7 \left (5+2 x^2\right )}\right ) \, dx+\frac {192 \int \frac {-1+x}{5+2 x^2} \, dx}{1225}+\frac {16}{35} \int \frac {-1+x}{\left (5+2 x^2\right )^2} \, dx-\frac {18}{35} \int \frac {5+2 x}{\left (5+2 x^2\right )^2} \, dx-\frac {4}{5} \int \left (\frac {\log (x)}{5 x^2}+\frac {(4+x) \log (x)}{\left (5+2 x^2\right )^2}-\frac {2 \log (x)}{5 \left (5+2 x^2\right )}\right ) \, dx-\frac {4}{5} \int \left (\frac {\log (1+x)}{5 x^2}+\frac {(4+x) \log (1+x)}{\left (5+2 x^2\right )^2}-\frac {2 \log (1+x)}{5 \left (5+2 x^2\right )}\right ) \, dx-\frac {1}{25} (2 (\log (x)+\log (1+x)-\log (x (1+x)))) \int \frac {-10-4 x^2}{x^2 \left (5+2 x^2\right )} \, dx\\ &=-\frac {4}{25 x}+\frac {\log (x)}{5}-\frac {3}{35} \log (1+x)-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {2}{245} \int \frac {3+4 x}{5+2 x^2} \, dx-\frac {18 \int \frac {-17+10 x}{5+2 x^2} \, dx}{1225}+\frac {9}{245} \int \frac {3+4 x}{5+2 x^2} \, dx-\frac {8}{175} \int \frac {1}{5+2 x^2} \, dx-\frac {192 \int \frac {1}{5+2 x^2} \, dx}{1225}+\frac {192 \int \frac {x}{5+2 x^2} \, dx}{1225}-\frac {4}{25} \int \frac {\log (x)}{x^2} \, dx-\frac {4}{25} \int \frac {\log (1+x)}{x^2} \, dx-\frac {9}{35} \int \frac {1}{5+2 x^2} \, dx+\frac {8}{25} \int \frac {\log (x)}{5+2 x^2} \, dx+\frac {8}{25} \int \frac {\log (1+x)}{5+2 x^2} \, dx-\frac {432 \int \frac {x}{5+2 x^2} \, dx}{1225}-\frac {18}{49} \int \frac {1}{5+2 x^2} \, dx-\frac {4}{5} \int \frac {(4+x) \log (x)}{\left (5+2 x^2\right )^2} \, dx-\frac {4}{5} \int \frac {(4+x) \log (1+x)}{\left (5+2 x^2\right )^2} \, dx+\frac {1}{25} (4 (\log (x)+\log (1+x)-\log (x (1+x)))) \int \frac {1}{x^2} \, dx\\ &=-\frac {349 \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )}{1225}-\frac {9 \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )}{35 \sqrt {10}}+\frac {\log (x)}{5}+\frac {4 \log (x)}{25 x}+\frac {4}{25} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right ) \log (x)-\frac {3}{35} \log (1+x)+\frac {4 \log (1+x)}{25 x}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {12}{245} \log \left (5+2 x^2\right )-\frac {6}{245} \int \frac {1}{5+2 x^2} \, dx-\frac {8}{245} \int \frac {x}{5+2 x^2} \, dx+\frac {27}{245} \int \frac {1}{5+2 x^2} \, dx-\frac {4}{25} \int \frac {1}{x (1+x)} \, dx+\frac {306 \int \frac {1}{5+2 x^2} \, dx}{1225}-\frac {8}{25} \int \frac {\tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )}{\sqrt {10} x} \, dx+\frac {8}{25} \int \left (\frac {i \log (1+x)}{2 \sqrt {5} \left (i \sqrt {5}-\sqrt {2} x\right )}+\frac {i \log (1+x)}{2 \sqrt {5} \left (i \sqrt {5}+\sqrt {2} x\right )}\right ) \, dx-\frac {4}{5} \int \left (\frac {4 \log (x)}{\left (5+2 x^2\right )^2}+\frac {x \log (x)}{\left (5+2 x^2\right )^2}\right ) \, dx-\frac {4}{5} \int \left (\frac {4 \log (1+x)}{\left (5+2 x^2\right )^2}+\frac {x \log (1+x)}{\left (5+2 x^2\right )^2}\right ) \, dx\\ &=-\frac {43}{175} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {\log (x)}{5}+\frac {4 \log (x)}{25 x}+\frac {4}{25} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right ) \log (x)-\frac {3}{35} \log (1+x)+\frac {4 \log (1+x)}{25 x}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {2}{35} \log \left (5+2 x^2\right )-\frac {4}{25} \int \frac {1}{x} \, dx+\frac {4}{25} \int \frac {1}{1+x} \, dx-\frac {4}{5} \int \frac {x \log (x)}{\left (5+2 x^2\right )^2} \, dx-\frac {4}{5} \int \frac {x \log (1+x)}{\left (5+2 x^2\right )^2} \, dx-\frac {16}{5} \int \frac {\log (x)}{\left (5+2 x^2\right )^2} \, dx-\frac {16}{5} \int \frac {\log (1+x)}{\left (5+2 x^2\right )^2} \, dx-\frac {1}{25} \left (4 \sqrt {\frac {2}{5}}\right ) \int \frac {\tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )}{x} \, dx+\frac {(4 i) \int \frac {\log (1+x)}{i \sqrt {5}-\sqrt {2} x} \, dx}{25 \sqrt {5}}+\frac {(4 i) \int \frac {\log (1+x)}{i \sqrt {5}+\sqrt {2} x} \, dx}{25 \sqrt {5}}\\ &=-\frac {43}{175} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {4}{25} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right ) \log (x)+\frac {13}{175} \log (1+x)+\frac {4 \log (1+x)}{25 x}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (\frac {i \sqrt {5}-\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (-\frac {i \sqrt {5}+\sqrt {2} x}{\sqrt {2}-i \sqrt {5}}\right )-\frac {2}{35} \log \left (5+2 x^2\right )+\frac {2}{25} \int \frac {x}{5+2 x^2} \, dx-\frac {1}{5} \int \frac {1}{(1+x) \left (5+2 x^2\right )} \, dx+\frac {8}{25} \int \frac {1}{5+2 x^2} \, dx-\frac {8}{25} \int \frac {\log (x)}{5+2 x^2} \, dx-\frac {16}{5} \int \left (-\frac {\log (1+x)}{10 \left (i \sqrt {10}-2 x\right )^2}-\frac {\log (1+x)}{10 \left (i \sqrt {10}+2 x\right )^2}-\frac {\log (1+x)}{5 \left (-10-4 x^2\right )}\right ) \, dx-\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (1-i \sqrt {\frac {2}{5}} x\right )}{x} \, dx+\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (1+i \sqrt {\frac {2}{5}} x\right )}{x} \, dx+\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (\frac {i \sqrt {5}-\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )}{1+x} \, dx-\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (\frac {i \sqrt {5}+\sqrt {2} x}{-\sqrt {2}+i \sqrt {5}}\right )}{1+x} \, dx\\ &=-\frac {3}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {13}{175} \log (1+x)+\frac {4 \log (1+x)}{25 x}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (\frac {i \sqrt {5}-\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (-\frac {i \sqrt {5}+\sqrt {2} x}{\sqrt {2}-i \sqrt {5}}\right )-\frac {13}{350} \log \left (5+2 x^2\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (-i \sqrt {\frac {2}{5}} x\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (i \sqrt {\frac {2}{5}} x\right )-\frac {1}{35} \int \frac {1}{1+x} \, dx-\frac {1}{35} \int \frac {2-2 x}{5+2 x^2} \, dx+\frac {8}{25} \int \frac {\tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )}{\sqrt {10} x} \, dx+\frac {8}{25} \int \frac {\log (1+x)}{\left (i \sqrt {10}-2 x\right )^2} \, dx+\frac {8}{25} \int \frac {\log (1+x)}{\left (i \sqrt {10}+2 x\right )^2} \, dx+\frac {16}{25} \int \frac {\log (1+x)}{-10-4 x^2} \, dx-\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {2} x}{-\sqrt {2}+i \sqrt {5}}\right )}{x} \, dx,x,1+x\right )+\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )}{x} \, dx,x,1+x\right )\\ &=-\frac {3}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {8}{175} \log (1+x)+\frac {4 \log (1+x)}{25 \left (i \sqrt {10}-2 x\right )}+\frac {4 \log (1+x)}{25 x}-\frac {4 \log (1+x)}{25 \left (i \sqrt {10}+2 x\right )}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (\frac {i \sqrt {5}-\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (-\frac {i \sqrt {5}+\sqrt {2} x}{\sqrt {2}-i \sqrt {5}}\right )-\frac {13}{350} \log \left (5+2 x^2\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (-i \sqrt {\frac {2}{5}} x\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (i \sqrt {\frac {2}{5}} x\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}-i \sqrt {5}}\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}+i \sqrt {5}}\right )-\frac {2}{35} \int \frac {1}{5+2 x^2} \, dx+\frac {2}{35} \int \frac {x}{5+2 x^2} \, dx-\frac {4}{25} \int \frac {1}{\left (i \sqrt {10}-2 x\right ) (1+x)} \, dx+\frac {4}{25} \int \frac {1}{(1+x) \left (i \sqrt {10}+2 x\right )} \, dx+\frac {16}{25} \int \left (-\frac {i \log (1+x)}{4 \sqrt {5} \left (i \sqrt {5}-\sqrt {2} x\right )}-\frac {i \log (1+x)}{4 \sqrt {5} \left (i \sqrt {5}+\sqrt {2} x\right )}\right ) \, dx+\frac {1}{25} \left (4 \sqrt {\frac {2}{5}}\right ) \int \frac {\tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )}{x} \, dx\\ &=-\frac {4}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {8}{175} \log (1+x)+\frac {4 \log (1+x)}{25 \left (i \sqrt {10}-2 x\right )}+\frac {4 \log (1+x)}{25 x}-\frac {4 \log (1+x)}{25 \left (i \sqrt {10}+2 x\right )}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}-\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (\frac {i \sqrt {5}-\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \log (1+x) \log \left (-\frac {i \sqrt {5}+\sqrt {2} x}{\sqrt {2}-i \sqrt {5}}\right )-\frac {4}{175} \log \left (5+2 x^2\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (-i \sqrt {\frac {2}{5}} x\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (i \sqrt {\frac {2}{5}} x\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}-i \sqrt {5}}\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}+i \sqrt {5}}\right )+\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (1-i \sqrt {\frac {2}{5}} x\right )}{x} \, dx-\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (1+i \sqrt {\frac {2}{5}} x\right )}{x} \, dx-\frac {(4 i) \int \frac {\log (1+x)}{i \sqrt {5}-\sqrt {2} x} \, dx}{25 \sqrt {5}}-\frac {(4 i) \int \frac {\log (1+x)}{i \sqrt {5}+\sqrt {2} x} \, dx}{25 \sqrt {5}}-\frac {4 \int \frac {1}{1+x} \, dx}{25 \left (2-i \sqrt {10}\right )}+\frac {8 \int \frac {1}{i \sqrt {10}+2 x} \, dx}{25 \left (2-i \sqrt {10}\right )}-\frac {4 \int \frac {1}{1+x} \, dx}{25 \left (2+i \sqrt {10}\right )}-\frac {8 \int \frac {1}{i \sqrt {10}-2 x} \, dx}{25 \left (2+i \sqrt {10}\right )}\\ &=-\frac {4}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {4 \log \left (\sqrt {10}+2 i x\right )}{25 \left (2+i \sqrt {10}\right )}+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {8}{175} \log (1+x)-\frac {4 \log (1+x)}{25 \left (2-i \sqrt {10}\right )}-\frac {4 \log (1+x)}{25 \left (2+i \sqrt {10}\right )}+\frac {4 \log (1+x)}{25 \left (i \sqrt {10}-2 x\right )}+\frac {4 \log (1+x)}{25 x}-\frac {4 \log (1+x)}{25 \left (i \sqrt {10}+2 x\right )}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}+\frac {4 \log \left (i \sqrt {10}+2 x\right )}{25 \left (2-i \sqrt {10}\right )}-\frac {4}{175} \log \left (5+2 x^2\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}-i \sqrt {5}}\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}+i \sqrt {5}}\right )-\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (\frac {i \sqrt {5}-\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )}{1+x} \, dx+\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \int \frac {\log \left (\frac {i \sqrt {5}+\sqrt {2} x}{-\sqrt {2}+i \sqrt {5}}\right )}{1+x} \, dx\\ &=-\frac {4}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {4 \log \left (\sqrt {10}+2 i x\right )}{25 \left (2+i \sqrt {10}\right )}+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {8}{175} \log (1+x)-\frac {4 \log (1+x)}{25 \left (2-i \sqrt {10}\right )}-\frac {4 \log (1+x)}{25 \left (2+i \sqrt {10}\right )}+\frac {4 \log (1+x)}{25 \left (i \sqrt {10}-2 x\right )}+\frac {4 \log (1+x)}{25 x}-\frac {4 \log (1+x)}{25 \left (i \sqrt {10}+2 x\right )}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}+\frac {4 \log \left (i \sqrt {10}+2 x\right )}{25 \left (2-i \sqrt {10}\right )}-\frac {4}{175} \log \left (5+2 x^2\right )+\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}-i \sqrt {5}}\right )-\frac {2}{25} i \sqrt {\frac {2}{5}} \text {Li}_2\left (\frac {\sqrt {2} (1+x)}{\sqrt {2}+i \sqrt {5}}\right )+\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {2} x}{-\sqrt {2}+i \sqrt {5}}\right )}{x} \, dx,x,1+x\right )-\frac {1}{25} \left (2 i \sqrt {\frac {2}{5}}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {2} x}{\sqrt {2}+i \sqrt {5}}\right )}{x} \, dx,x,1+x\right )\\ &=-\frac {4}{35} \sqrt {\frac {2}{5}} \tan ^{-1}\left (\sqrt {\frac {2}{5}} x\right )+\frac {4 \log \left (\sqrt {10}+2 i x\right )}{25 \left (2+i \sqrt {10}\right )}+\frac {\log (x)}{25}+\frac {4 \log (x)}{25 x}-\frac {8 x \log (x)}{25 \left (5+2 x^2\right )}-\frac {2 x^2 \log (x)}{25 \left (5+2 x^2\right )}+\frac {8}{175} \log (1+x)-\frac {4 \log (1+x)}{25 \left (2-i \sqrt {10}\right )}-\frac {4 \log (1+x)}{25 \left (2+i \sqrt {10}\right )}+\frac {4 \log (1+x)}{25 \left (i \sqrt {10}-2 x\right )}+\frac {4 \log (1+x)}{25 x}-\frac {4 \log (1+x)}{25 \left (i \sqrt {10}+2 x\right )}+\frac {\log (1+x)}{5 \left (5+2 x^2\right )}-\frac {4 (\log (x)+\log (1+x)-\log (x (1+x)))}{25 x}-\frac {(5-8 x) (\log (x)+\log (1+x)-\log (x (1+x)))}{25 \left (5+2 x^2\right )}+\frac {4 \log \left (i \sqrt {10}+2 x\right )}{25 \left (2-i \sqrt {10}\right )}-\frac {4}{175} \log \left (5+2 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 25, normalized size = 1.00 \begin {gather*} \frac {(4+x) \log (x (1+x))}{5 x \left (5+2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 22, normalized size = 0.88 \begin {gather*} \frac {{\left (x + 4\right )} \log \left (x^{2} + x\right )}{5 \, {\left (2 \, x^{3} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 29, normalized size = 1.16 \begin {gather*} -\frac {1}{25} \, {\left (\frac {8 \, x - 5}{2 \, x^{2} + 5} - \frac {4}{x}\right )} \log \left (x^{2} + x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 0.96
method | result | size |
risch | \(\frac {\ln \left (x^{2}+x \right ) \left (4+x \right )}{5 x \left (2 x^{2}+5\right )}\) | \(24\) |
norman | \(\frac {\frac {\ln \left (x^{2}+x \right ) x}{5}+\frac {4 \ln \left (x^{2}+x \right )}{5}}{\left (2 x^{2}+5\right ) x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.29, size = 98, normalized size = 3.92 \begin {gather*} \frac {2 \, {\left (28 \, x^{2} + 5 \, {\left (3 \, x^{3} + 11 \, x + 14\right )} \log \left (x + 1\right ) - 35 \, {\left (x^{3} + 2 \, x - 2\right )} \log \relax (x) + 70\right )}}{175 \, {\left (2 \, x^{3} + 5 \, x\right )}} - \frac {4 \, {\left (16 \, x^{2} + 5 \, x + 35\right )}}{175 \, {\left (2 \, x^{3} + 5 \, x\right )}} + \frac {4 \, {\left (2 \, x + 5\right )}}{175 \, {\left (2 \, x^{2} + 5\right )}} - \frac {3}{35} \, \log \left (x + 1\right ) + \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 21, normalized size = 0.84 \begin {gather*} \frac {\ln \left (x^2+x\right )\,\left (\frac {x}{10}+\frac {2}{5}\right )}{x^3+\frac {5\,x}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 17, normalized size = 0.68 \begin {gather*} \frac {\left (x + 4\right ) \log {\left (x^{2} + x \right )}}{10 x^{3} + 25 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________