Optimal. Leaf size=23 \[ \frac {e^3}{6+e-e^{10}+\frac {1}{\frac {1}{2}+x^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 38, normalized size of antiderivative = 1.65, number of steps used = 5, number of rules used = 5, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {6, 12, 1989, 28, 261} \begin {gather*} -\frac {2 e^3}{\left (6+e-e^{10}\right ) \left (2 \left (6+e-e^{10}\right ) x^2-e^{10}+e+8\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 28
Rule 261
Rule 1989
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^3 x}{64+192 x^2+144 x^4+\left (e^2+e^{20}\right ) \left (1+4 x^2+4 x^4\right )+e \left (16+56 x^2+48 x^4\right )+e^{10} \left (-16-56 x^2-48 x^4+e \left (-2-8 x^2-8 x^4\right )\right )} \, dx\\ &=\left (8 e^3\right ) \int \frac {x}{64+192 x^2+144 x^4+\left (e^2+e^{20}\right ) \left (1+4 x^2+4 x^4\right )+e \left (16+56 x^2+48 x^4\right )+e^{10} \left (-16-56 x^2-48 x^4+e \left (-2-8 x^2-8 x^4\right )\right )} \, dx\\ &=\left (8 e^3\right ) \int \frac {x}{\left (8+e-e^{10}\right )^2+4 \left (6+e-e^{10}\right ) \left (8+e-e^{10}\right ) x^2+4 \left (6+e-e^{10}\right )^2 x^4} \, dx\\ &=\left (32 e^3 \left (6+e-e^{10}\right )^2\right ) \int \frac {x}{\left (2 \left (6+e-e^{10}\right ) \left (8+e-e^{10}\right )+4 \left (6+e-e^{10}\right )^2 x^2\right )^2} \, dx\\ &=-\frac {2 e^3}{\left (6+e-e^{10}\right ) \left (8+e-e^{10}+2 \left (6+e-e^{10}\right ) x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 44, normalized size = 1.91 \begin {gather*} -\frac {2 e^3}{\left (-6-e+e^{10}\right ) \left (-8-e+e^{10}-12 x^2-2 e x^2+2 e^{10} x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 66, normalized size = 2.87 \begin {gather*} -\frac {2 \, e^{3}}{72 \, x^{2} + {\left (2 \, x^{2} + 1\right )} e^{20} - 2 \, {\left (2 \, x^{2} + 1\right )} e^{11} - 2 \, {\left (12 \, x^{2} + 7\right )} e^{10} + {\left (2 \, x^{2} + 1\right )} e^{2} + 2 \, {\left (12 \, x^{2} + 7\right )} e + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 45, normalized size = 1.96
method | result | size |
risch | \(-\frac {{\mathrm e}^{3}}{\left ({\mathrm e}^{10}-{\mathrm e}-6\right ) \left (x^{2} {\mathrm e}^{10}+\frac {{\mathrm e}^{10}}{2}-x^{2} {\mathrm e}-6 x^{2}-\frac {{\mathrm e}}{2}-4\right )}\) | \(45\) |
gosper | \(-\frac {2 \,{\mathrm e}^{3}}{\left (2 x^{2} {\mathrm e}^{10}-2 x^{2} {\mathrm e}+{\mathrm e}^{10}-12 x^{2}-{\mathrm e}-8\right ) \left ({\mathrm e}^{10}-{\mathrm e}-6\right )}\) | \(50\) |
norman | \(\frac {4 \,{\mathrm e}^{3} x^{2}}{\left ({\mathrm e}^{10}-{\mathrm e}-8\right ) \left (2 x^{2} {\mathrm e}^{10}-2 x^{2} {\mathrm e}+{\mathrm e}^{10}-12 x^{2}-{\mathrm e}-8\right )}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 47, normalized size = 2.04 \begin {gather*} -\frac {2 \, e^{3}}{2 \, x^{2} {\left (e^{20} - 2 \, e^{11} - 12 \, e^{10} + e^{2} + 12 \, e + 36\right )} + e^{20} - 2 \, e^{11} - 14 \, e^{10} + e^{2} + 14 \, e + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 38, normalized size = 1.65 \begin {gather*} -\frac {2\,{\mathrm {e}}^3}{\left (\mathrm {e}-{\mathrm {e}}^{10}+6\right )\,\left (\left (2\,\mathrm {e}-2\,{\mathrm {e}}^{10}+12\right )\,x^2+\mathrm {e}-{\mathrm {e}}^{10}+8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.75, size = 63, normalized size = 2.74 \begin {gather*} - \frac {8 e^{3}}{x^{2} \left (- 96 e^{10} - 16 e^{11} + 8 e^{2} + 96 e + 288 + 8 e^{20}\right ) - 56 e^{10} - 8 e^{11} + 4 e^{2} + 56 e + 192 + 4 e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________