Optimal. Leaf size=27 \[ -1+\frac {3}{-e^4+e^x+\frac {1}{4} \left (-\frac {68}{3}+x\right )-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 22, normalized size of antiderivative = 0.81, number of steps used = 3, number of rules used = 3, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {6688, 12, 6686} \begin {gather*} \frac {36}{-9 x+12 e^x-4 \left (17+3 e^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {108 \left (3-4 e^x\right )}{\left (12 e^x-68 \left (1+\frac {3 e^4}{17}\right )-9 x\right )^2} \, dx\\ &=108 \int \frac {3-4 e^x}{\left (12 e^x-68 \left (1+\frac {3 e^4}{17}\right )-9 x\right )^2} \, dx\\ &=\frac {36}{12 e^x-4 \left (17+3 e^4\right )-9 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.70 \begin {gather*} -\frac {36}{68+12 e^4-12 e^x+9 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 17, normalized size = 0.63 \begin {gather*} -\frac {36}{9 \, x + 12 \, e^{4} - 12 \, e^{x} + 68} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 17, normalized size = 0.63 \begin {gather*} -\frac {36}{9 \, x + 12 \, e^{4} - 12 \, e^{x} + 68} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 18, normalized size = 0.67
method | result | size |
norman | \(-\frac {36}{9 x +68+12 \,{\mathrm e}^{4}-12 \,{\mathrm e}^{x}}\) | \(18\) |
risch | \(-\frac {36}{9 x +68+12 \,{\mathrm e}^{4}-12 \,{\mathrm e}^{x}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 17, normalized size = 0.63 \begin {gather*} -\frac {36}{9 \, x + 12 \, e^{4} - 12 \, e^{x} + 68} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 33, normalized size = 1.22 \begin {gather*} \frac {27\,\left (3\,x-4\,{\mathrm {e}}^x\right )}{\left (3\,{\mathrm {e}}^4+17\right )\,\left (9\,x+12\,{\mathrm {e}}^4-12\,{\mathrm {e}}^x+68\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.56 \begin {gather*} \frac {36}{- 9 x + 12 e^{x} - 12 e^{4} - 68} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________