Optimal. Leaf size=24 \[ 10 (4-x) \left (e^{5+\frac {x}{3}}+x-e^x x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 50, normalized size of antiderivative = 2.08, number of steps used = 12, number of rules used = 4, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {12, 2176, 2194, 2196} \begin {gather*} 10 e^x x^2-10 x^2-40 e^x x+40 x+30 e^{\frac {x}{3}+5}+10 e^{\frac {x}{3}+5} (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (120+e^{5+\frac {x}{3}} (10-10 x)-60 x+e^x \left (-120-60 x+30 x^2\right )\right ) \, dx\\ &=40 x-10 x^2+\frac {1}{3} \int e^{5+\frac {x}{3}} (10-10 x) \, dx+\frac {1}{3} \int e^x \left (-120-60 x+30 x^2\right ) \, dx\\ &=10 e^{5+\frac {x}{3}} (1-x)+40 x-10 x^2+\frac {1}{3} \int \left (-120 e^x-60 e^x x+30 e^x x^2\right ) \, dx+10 \int e^{5+\frac {x}{3}} \, dx\\ &=30 e^{5+\frac {x}{3}}+10 e^{5+\frac {x}{3}} (1-x)+40 x-10 x^2+10 \int e^x x^2 \, dx-20 \int e^x x \, dx-40 \int e^x \, dx\\ &=30 e^{5+\frac {x}{3}}-40 e^x+10 e^{5+\frac {x}{3}} (1-x)+40 x-20 e^x x-10 x^2+10 e^x x^2+20 \int e^x \, dx-20 \int e^x x \, dx\\ &=30 e^{5+\frac {x}{3}}-20 e^x+10 e^{5+\frac {x}{3}} (1-x)+40 x-40 e^x x-10 x^2+10 e^x x^2+20 \int e^x \, dx\\ &=30 e^{5+\frac {x}{3}}+10 e^{5+\frac {x}{3}} (1-x)+40 x-40 e^x x-10 x^2+10 e^x x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 1.04 \begin {gather*} 10 (-4+x) \left (-e^{5+\frac {x}{3}}-x+e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 38, normalized size = 1.58 \begin {gather*} -10 \, {\left ({\left (x^{2} - 4 \, x\right )} e^{15} - {\left (x^{2} - 4 \, x\right )} e^{\left (x + 15\right )} + {\left (x - 4\right )} e^{\left (\frac {1}{3} \, x + 20\right )}\right )} e^{\left (-15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.56, size = 31, normalized size = 1.29 \begin {gather*} -10 \, x^{2} + 10 \, {\left (x^{2} - 4 \, x\right )} e^{x} - 10 \, {\left (x - 4\right )} e^{\left (\frac {1}{3} \, x + 5\right )} + 40 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 36, normalized size = 1.50
method | result | size |
risch | \(\frac {\left (30 x^{2}-120 x \right ) {\mathrm e}^{x}}{3}+\frac {\left (-30 x +120\right ) {\mathrm e}^{\frac {x}{3}+5}}{3}-10 x^{2}+40 x\) | \(36\) |
default | \(-10 x^{2}+40 x +10 \,{\mathrm e}^{x} x^{2}-40 \,{\mathrm e}^{x} x +\frac {10 \,{\mathrm e}^{5} \left (-3 x \,{\mathrm e}^{\frac {x}{3}}+12 \,{\mathrm e}^{\frac {x}{3}}\right )}{3}\) | \(40\) |
norman | \(-10 \,{\mathrm e}^{5} {\mathrm e}^{\frac {x}{3}} x +10 \,{\mathrm e}^{x} x^{2}+40 \,{\mathrm e}^{5} {\mathrm e}^{\frac {x}{3}}-40 \,{\mathrm e}^{x} x -10 x^{2}+40 x\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 35, normalized size = 1.46 \begin {gather*} -10 \, x^{2} - 10 \, {\left (x e^{5} - 4 \, e^{5}\right )} e^{\left (\frac {1}{3} \, x\right )} + 10 \, {\left (x^{2} - 4 \, x\right )} e^{x} + 40 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 18, normalized size = 0.75 \begin {gather*} -10\,\left (x-4\right )\,\left (x+{\mathrm {e}}^{\frac {x}{3}+5}-x\,{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 36, normalized size = 1.50 \begin {gather*} - 10 x^{2} + 40 x + \left (10 x^{2} - 40 x\right ) e^{x} + \left (- 10 x e^{5} + 40 e^{5}\right ) e^{\frac {x}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________