Optimal. Leaf size=24 \[ \log \left (\left (e^{2+x}+e^{4+\frac {1}{1-x}+x^2}\right ) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2+x} \left (1-2 x+x^2\right )+e^{\frac {-5+4 x-x^2+x^3}{-1+x}} \left (1-2 x+x^2\right )+\left (e^{2+x} \left (x-2 x^2+x^3\right )+e^{\frac {-5+4 x-x^2+x^3}{-1+x}} \left (x+2 x^2-4 x^3+2 x^4\right )\right ) \log (x)}{\left (e^{2+x} \left (x-2 x^2+x^3\right )+e^{\frac {-5+4 x-x^2+x^3}{-1+x}} \left (x-2 x^2+x^3\right )\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{\frac {3+x+2 x^2}{-1+x}} x \left (-4+5 x-2 x^2\right )}{\left (e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}\right ) (1-x)^2}+\frac {1-2 x+x^2+x \log (x)+2 x^2 \log (x)-4 x^3 \log (x)+2 x^4 \log (x)}{(-1+x)^2 x \log (x)}\right ) \, dx\\ &=\int \frac {e^{\frac {3+x+2 x^2}{-1+x}} x \left (-4+5 x-2 x^2\right )}{\left (e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}\right ) (1-x)^2} \, dx+\int \frac {1-2 x+x^2+x \log (x)+2 x^2 \log (x)-4 x^3 \log (x)+2 x^4 \log (x)}{(-1+x)^2 x \log (x)} \, dx\\ &=\int \left (\frac {e^{\frac {3+x+2 x^2}{-1+x}}}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}}-\frac {e^{\frac {3+x+2 x^2}{-1+x}}}{\left (e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}\right ) (-1+x)^2}-\frac {2 e^{\frac {3+x+2 x^2}{-1+x}} x}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}}\right ) \, dx+\int \left (\frac {1+2 x-4 x^2+2 x^3}{(-1+x)^2}+\frac {1}{x \log (x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {3+x+2 x^2}{-1+x}} x}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}} \, dx\right )+\int \frac {e^{\frac {3+x+2 x^2}{-1+x}}}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}} \, dx-\int \frac {e^{\frac {3+x+2 x^2}{-1+x}}}{\left (e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}\right ) (-1+x)^2} \, dx+\int \frac {1+2 x-4 x^2+2 x^3}{(-1+x)^2} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=-\left (2 \int \frac {e^{\frac {3+x+2 x^2}{-1+x}} x}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}} \, dx\right )+\int \frac {e^{\frac {3+x+2 x^2}{-1+x}}}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}} \, dx-\int \frac {e^{\frac {3+x+2 x^2}{-1+x}}}{\left (e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}\right ) (-1+x)^2} \, dx+\int \left (\frac {1}{(-1+x)^2}+2 x\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\frac {1}{1-x}+x^2+\log (\log (x))-2 \int \frac {e^{\frac {3+x+2 x^2}{-1+x}} x}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}} \, dx+\int \frac {e^{\frac {3+x+2 x^2}{-1+x}}}{e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}} \, dx-\int \frac {e^{\frac {3+x+2 x^2}{-1+x}}}{\left (e^{\frac {x \left (4+x^2\right )}{-1+x}}+e^{\frac {3}{-1+x}+\frac {x}{-1+x}+\frac {2 x^2}{-1+x}}\right ) (-1+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.40, size = 29, normalized size = 1.21 \begin {gather*} -\frac {1}{-1+x}+\log \left (e^{\frac {1}{-1+x}+x}+e^{2+x^2}\right )+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 30, normalized size = 1.25 \begin {gather*} \log \left (e^{\left (x + 2\right )} + e^{\left (\frac {x^{3} - x^{2} + 4 \, x - 5}{x - 1}\right )}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.98, size = 29, normalized size = 1.21 \begin {gather*} \log \left (e^{x} + e^{\left (\frac {x^{3} - x^{2} - x}{x - 1} + 3\right )}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.33
method | result | size |
risch | \(\ln \left ({\mathrm e}^{\frac {x^{3}-x^{2}+4 x -5}{x -1}}+{\mathrm e}^{2+x}\right )-4+\ln \left (\ln \relax (x )\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.02, size = 39, normalized size = 1.62 \begin {gather*} \frac {x^{2} - x - 1}{x - 1} + \log \left ({\left (e^{\left (x^{2} + 2\right )} + e^{\left (x + \frac {1}{x - 1}\right )}\right )} e^{\left (-x\right )}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 50, normalized size = 2.08 \begin {gather*} \ln \left (\ln \relax (x)\right )+\ln \left ({\mathrm {e}}^2\,{\mathrm {e}}^x+{\mathrm {e}}^{\frac {4\,x}{x-1}}\,{\mathrm {e}}^{\frac {x^3}{x-1}}\,{\mathrm {e}}^{-\frac {x^2}{x-1}}\,{\mathrm {e}}^{-\frac {5}{x-1}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.88, size = 27, normalized size = 1.12 \begin {gather*} \log {\left (e^{\frac {x^{3} - x^{2} + 4 x - 5}{x - 1}} + e^{x + 2} \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________