Optimal. Leaf size=22 \[ \frac {15 x}{16}+\frac {5}{4} e^{-(4+x)^2} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 49, normalized size of antiderivative = 2.23, number of steps used = 11, number of rules used = 6, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 6688, 2226, 2205, 2209, 2212} \begin {gather*} \frac {5}{4} e^{-(x+4)^2} (x+4)^2-10 e^{-(x+4)^2} (x+4)+20 e^{-(x+4)^2}+\frac {15 x}{16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2205
Rule 2209
Rule 2212
Rule 2226
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int e^{-16-8 x-x^2} \left (15 e^{16+8 x+x^2}+40 x-160 x^2-40 x^3\right ) \, dx\\ &=\frac {1}{16} \int \left (15-40 e^{-(4+x)^2} x \left (-1+4 x+x^2\right )\right ) \, dx\\ &=\frac {15 x}{16}-\frac {5}{2} \int e^{-(4+x)^2} x \left (-1+4 x+x^2\right ) \, dx\\ &=\frac {15 x}{16}-\frac {5}{2} \int \left (4 e^{-(4+x)^2}+15 e^{-(4+x)^2} (4+x)-8 e^{-(4+x)^2} (4+x)^2+e^{-(4+x)^2} (4+x)^3\right ) \, dx\\ &=\frac {15 x}{16}-\frac {5}{2} \int e^{-(4+x)^2} (4+x)^3 \, dx-10 \int e^{-(4+x)^2} \, dx+20 \int e^{-(4+x)^2} (4+x)^2 \, dx-\frac {75}{2} \int e^{-(4+x)^2} (4+x) \, dx\\ &=\frac {75}{4} e^{-(4+x)^2}+\frac {15 x}{16}-10 e^{-(4+x)^2} (4+x)+\frac {5}{4} e^{-(4+x)^2} (4+x)^2-5 \sqrt {\pi } \text {erf}(4+x)-\frac {5}{2} \int e^{-(4+x)^2} (4+x) \, dx+10 \int e^{-(4+x)^2} \, dx\\ &=20 e^{-(4+x)^2}+\frac {15 x}{16}-10 e^{-(4+x)^2} (4+x)+\frac {5}{4} e^{-(4+x)^2} (4+x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 1.00 \begin {gather*} \frac {5}{16} \left (3 x+4 e^{-(4+x)^2} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 31, normalized size = 1.41 \begin {gather*} \frac {5}{16} \, {\left (4 \, x^{2} + 3 \, x e^{\left (x^{2} + 8 \, x + 16\right )}\right )} e^{\left (-x^{2} - 8 \, x - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 27, normalized size = 1.23 \begin {gather*} \frac {5}{4} \, {\left ({\left (x + 4\right )}^{2} - 8 \, x - 16\right )} e^{\left (-x^{2} - 8 \, x - 16\right )} + \frac {15}{16} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.82
method | result | size |
risch | \(\frac {15 x}{16}+\frac {5 x^{2} {\mathrm e}^{-\left (4+x \right )^{2}}}{4}\) | \(18\) |
default | \(\frac {15 x}{16}+\frac {5 x^{2} {\mathrm e}^{-x^{2}-8 x -16}}{4}\) | \(21\) |
norman | \(\left (\frac {5 x^{2}}{4}+\frac {15 x \,{\mathrm e}^{x^{2}+8 x +16}}{16}\right ) {\mathrm e}^{-x^{2}-8 x -16}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.54, size = 69, normalized size = 3.14 \begin {gather*} -\frac {10 \, {\left (x + 4\right )}^{3} \Gamma \left (\frac {3}{2}, {\left (x + 4\right )}^{2}\right )}{{\left ({\left (x + 4\right )}^{2}\right )}^{\frac {3}{2}}} - \frac {5 \, \sqrt {\pi } {\left (x + 4\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x + 4\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 4\right )}^{2}}} + \frac {15}{16} \, x + \frac {75}{4} \, e^{\left (-{\left (x + 4\right )}^{2}\right )} + \frac {5}{4} \, \Gamma \left (2, {\left (x + 4\right )}^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.95, size = 21, normalized size = 0.95 \begin {gather*} \frac {15\,x}{16}+\frac {5\,x^2\,{\mathrm {e}}^{-8\,x}\,{\mathrm {e}}^{-16}\,{\mathrm {e}}^{-x^2}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 1.00 \begin {gather*} \frac {5 x^{2} e^{- x^{2} - 8 x - 16}}{4} + \frac {15 x}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________