Optimal. Leaf size=27 \[ -1+e^{-x^2} \left (x+\frac {1}{4} (3+x (5+x)-\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 51, normalized size of antiderivative = 1.89, number of steps used = 15, number of rules used = 7, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {12, 6742, 2205, 2210, 2209, 2212, 2554} \begin {gather*} \frac {1}{4} e^{-x^2} x^2+\frac {9}{4} e^{-x^2} x+\frac {3 e^{-x^2}}{4}-\frac {1}{4} e^{-x^2} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2205
Rule 2209
Rule 2210
Rule 2212
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-x^2} \left (-1+9 x-4 x^2-18 x^3-2 x^4+2 x^2 \log (x)\right )}{x} \, dx\\ &=\frac {1}{4} \int \left (\frac {e^{-x^2} \left (-1+9 x-4 x^2-18 x^3-2 x^4\right )}{x}+2 e^{-x^2} x \log (x)\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{-x^2} \left (-1+9 x-4 x^2-18 x^3-2 x^4\right )}{x} \, dx+\frac {1}{2} \int e^{-x^2} x \log (x) \, dx\\ &=-\frac {1}{4} e^{-x^2} \log (x)+\frac {1}{4} \int \left (9 e^{-x^2}-\frac {e^{-x^2}}{x}-4 e^{-x^2} x-18 e^{-x^2} x^2-2 e^{-x^2} x^3\right ) \, dx-\frac {1}{2} \int -\frac {e^{-x^2}}{2 x} \, dx\\ &=-\frac {1}{4} e^{-x^2} \log (x)-\frac {1}{2} \int e^{-x^2} x^3 \, dx+\frac {9}{4} \int e^{-x^2} \, dx-\frac {9}{2} \int e^{-x^2} x^2 \, dx-\int e^{-x^2} x \, dx\\ &=\frac {e^{-x^2}}{2}+\frac {9}{4} e^{-x^2} x+\frac {1}{4} e^{-x^2} x^2+\frac {9}{8} \sqrt {\pi } \text {erf}(x)-\frac {1}{4} e^{-x^2} \log (x)-\frac {1}{2} \int e^{-x^2} x \, dx-\frac {9}{4} \int e^{-x^2} \, dx\\ &=\frac {3 e^{-x^2}}{4}+\frac {9}{4} e^{-x^2} x+\frac {1}{4} e^{-x^2} x^2-\frac {1}{4} e^{-x^2} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 23, normalized size = 0.85 \begin {gather*} \frac {1}{4} e^{-x^2} \left (3+9 x+x^2-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 27, normalized size = 1.00 \begin {gather*} \frac {1}{4} \, {\left (x^{2} + 9 \, x + 3\right )} e^{\left (-x^{2}\right )} - \frac {1}{4} \, e^{\left (-x^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 39, normalized size = 1.44 \begin {gather*} \frac {1}{4} \, x^{2} e^{\left (-x^{2}\right )} + \frac {9}{4} \, x e^{\left (-x^{2}\right )} - \frac {1}{4} \, e^{\left (-x^{2}\right )} \log \relax (x) + \frac {3}{4} \, e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.81
method | result | size |
norman | \(\left (\frac {3}{4}+\frac {9 x}{4}+\frac {x^{2}}{4}-\frac {\ln \relax (x )}{4}\right ) {\mathrm e}^{-x^{2}}\) | \(22\) |
risch | \(-\frac {{\mathrm e}^{-x^{2}} \ln \relax (x )}{4}+\frac {\left (x^{2}+9 x +3\right ) {\mathrm e}^{-x^{2}}}{4}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 41, normalized size = 1.52 \begin {gather*} \frac {1}{4} \, {\left (x^{2} + 1\right )} e^{\left (-x^{2}\right )} + \frac {9}{4} \, x e^{\left (-x^{2}\right )} - \frac {1}{4} \, e^{\left (-x^{2}\right )} \log \relax (x) + \frac {1}{2} \, e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.07, size = 20, normalized size = 0.74 \begin {gather*} \frac {{\mathrm {e}}^{-x^2}\,\left (9\,x-\ln \relax (x)+x^2+3\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 17, normalized size = 0.63 \begin {gather*} \frac {\left (x^{2} + 9 x - \log {\relax (x )} + 3\right ) e^{- x^{2}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________