Optimal. Leaf size=17 \[ \frac {e^{-2+\frac {1}{e^8}}}{x+e x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 18, normalized size of antiderivative = 1.06, number of steps used = 5, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {1593, 2274, 12, 1584, 74} \begin {gather*} \frac {e^{\frac {1}{e^8}-2}}{x (e x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 74
Rule 1584
Rule 1593
Rule 2274
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1-e^8 \log \left (e^2 \left (x+e x^2\right )\right )}{e^8}} (-1-2 e x)}{x (1+e x)} \, dx\\ &=\int \frac {e^{-2+\frac {1}{e^8}} (-1-2 e x)}{x (1+e x) \left (x+e x^2\right )} \, dx\\ &=e^{-2+\frac {1}{e^8}} \int \frac {-1-2 e x}{x (1+e x) \left (x+e x^2\right )} \, dx\\ &=e^{-2+\frac {1}{e^8}} \int \frac {-1-2 e x}{x^2 (1+e x)^2} \, dx\\ &=\frac {e^{-2+\frac {1}{e^8}}}{x (1+e x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 1.00 \begin {gather*} \frac {e^{-2+\frac {1}{e^8}}}{x+e x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.91, size = 17, normalized size = 1.00 \begin {gather*} \frac {e^{\left (e^{\left (-8\right )}\right )}}{x^{2} e^{3} + x e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 16, normalized size = 0.94 \begin {gather*} \frac {e^{\left (e^{\left (-8\right )} - 2\right )}}{x^{2} e + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 18, normalized size = 1.06
method | result | size |
risch | \(\frac {{\mathrm e}^{-2+{\mathrm e}^{-8}}}{x \left (x \,{\mathrm e}+1\right )}\) | \(18\) |
norman | \(\frac {{\mathrm e}^{{\mathrm e}^{-8}} {\mathrm e}^{-2}}{x \left (x \,{\mathrm e}+1\right )}\) | \(22\) |
default | \({\mathrm e}^{-2+{\mathrm e}^{-8}} \left (\frac {1}{x}-\frac {{\mathrm e}}{x \,{\mathrm e}+1}\right )\) | \(23\) |
gosper | \({\mathrm e}^{-\left ({\mathrm e}^{8} \ln \left (x \left (x \,{\mathrm e}+1\right ) {\mathrm e}^{2}\right )-1\right ) {\mathrm e}^{-8}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 22, normalized size = 1.29 \begin {gather*} e^{\left (-{\left (e^{8} \log \left ({\left (x^{2} e + x\right )} e^{2}\right ) - 1\right )} e^{\left (-8\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 17, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{-8}-2}}{x\,\left (x\,\mathrm {e}+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 17, normalized size = 1.00 \begin {gather*} \frac {e^{e^{-8}}}{x^{2} e^{3} + x e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________