Optimal. Leaf size=20 \[ \frac {1}{128} e^{2 e^2-x} x^2 \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {12, 6688, 6742, 2176, 2194, 2196, 2554} \begin {gather*} \frac {1}{128} e^{2 e^2-x} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 2554
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{128} \int e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx\\ &=\frac {1}{128} \int e^{2 e^2-x} x (1-(-2+x) \log (x)) \, dx\\ &=\frac {1}{128} \int \left (e^{2 e^2-x} x-e^{2 e^2-x} (-2+x) x \log (x)\right ) \, dx\\ &=\frac {1}{128} \int e^{2 e^2-x} x \, dx-\frac {1}{128} \int e^{2 e^2-x} (-2+x) x \log (x) \, dx\\ &=-\frac {1}{128} e^{2 e^2-x} x+\frac {1}{128} e^{2 e^2-x} x^2 \log (x)+\frac {1}{128} \int e^{2 e^2-x} \, dx-\frac {1}{128} \int e^{2 e^2-x} x \, dx\\ &=-\frac {1}{128} e^{2 e^2-x}+\frac {1}{128} e^{2 e^2-x} x^2 \log (x)-\frac {1}{128} \int e^{2 e^2-x} \, dx\\ &=\frac {1}{128} e^{2 e^2-x} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 1.00 \begin {gather*} \frac {1}{128} e^{2 e^2-x} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 16, normalized size = 0.80 \begin {gather*} \frac {1}{128} \, x^{2} e^{\left (-x + 2 \, e^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 16, normalized size = 0.80 \begin {gather*} \frac {1}{128} \, x^{2} e^{\left (-x + 2 \, e^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.85
method | result | size |
norman | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{2}} {\mathrm e}^{-x} x^{2} \ln \relax (x )}{128}\) | \(17\) |
risch | \(\frac {x^{2} \ln \relax (x ) {\mathrm e}^{2 \,{\mathrm e}^{2}-x}}{128}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 50, normalized size = 2.50 \begin {gather*} \frac {1}{128} \, {\left (x^{2} e^{\left (2 \, e^{2}\right )} \log \relax (x) + x e^{\left (2 \, e^{2}\right )} + e^{\left (2 \, e^{2}\right )}\right )} e^{\left (-x\right )} - \frac {1}{128} \, {\left (x e^{\left (2 \, e^{2}\right )} + e^{\left (2 \, e^{2}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 16, normalized size = 0.80 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^2}\,{\mathrm {e}}^{-x}\,\ln \relax (x)}{128} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 17, normalized size = 0.85 \begin {gather*} \frac {x^{2} e^{- x} e^{2 e^{2}} \log {\relax (x )}}{128} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________