Optimal. Leaf size=22 \[ \log (5)+3 x (5+x) \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.66, antiderivative size = 35, normalized size of antiderivative = 1.59, number of steps used = 17, number of rules used = 4, integrand size = 107, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6741, 6742, 2555, 12} \begin {gather*} 3 x^2 \log \left (2 \log \left (\frac {16 x}{\log (x)}+3\right )\right )+15 x \log \left (2 \log \left (\frac {16 x}{\log (x)}+3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2555
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-240 x-48 x^2+\left (240 x+48 x^2\right ) \log (x)+\left (\left (240 x+96 x^2\right ) \log (x)+(45+18 x) \log ^2(x)\right ) \log \left (\frac {16 x+3 \log (x)}{\log (x)}\right ) \log \left (2 \log \left (\frac {16 x+3 \log (x)}{\log (x)}\right )\right )}{\log (x) (16 x+3 \log (x)) \log \left (\frac {16 x+3 \log (x)}{\log (x)}\right )} \, dx\\ &=\int \left (\frac {48 x (5+x) (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}+3 (5+2 x) \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )\right ) \, dx\\ &=3 \int (5+2 x) \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right ) \, dx+48 \int \frac {x (5+x) (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx\\ &=15 x \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+3 x^2 \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )-3 \int \frac {16 x (5+x) (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx+48 \int \left (\frac {5 x (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}+\frac {x^2 (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}\right ) \, dx\\ &=15 x \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+3 x^2 \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+48 \int \frac {x^2 (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-48 \int \frac {x (5+x) (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx+240 \int \frac {x (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx\\ &=15 x \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+3 x^2 \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+48 \int \left (\frac {x^2}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}-\frac {x^2}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}\right ) \, dx-48 \int \left (\frac {5 x (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}+\frac {x^2 (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}\right ) \, dx+240 \int \left (\frac {x}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}-\frac {x}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}\right ) \, dx\\ &=15 x \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+3 x^2 \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+48 \int \frac {x^2}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-48 \int \frac {x^2}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-48 \int \frac {x^2 (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx+240 \int \frac {x}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-240 \int \frac {x}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-240 \int \frac {x (-1+\log (x))}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx\\ &=15 x \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+3 x^2 \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )-48 \int \left (\frac {x^2}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}-\frac {x^2}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}\right ) \, dx+48 \int \frac {x^2}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-48 \int \frac {x^2}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-240 \int \left (\frac {x}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}-\frac {x}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )}\right ) \, dx+240 \int \frac {x}{(16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx-240 \int \frac {x}{\log (x) (16 x+3 \log (x)) \log \left (3+\frac {16 x}{\log (x)}\right )} \, dx\\ &=15 x \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )+3 x^2 \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 19, normalized size = 0.86 \begin {gather*} 3 x (5+x) \log \left (2 \log \left (3+\frac {16 x}{\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 26, normalized size = 1.18 \begin {gather*} 3 \, {\left (x^{2} + 5 \, x\right )} \log \left (2 \, \log \left (\frac {16 \, x + 3 \, \log \relax (x)}{\log \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.64, size = 27, normalized size = 1.23 \begin {gather*} 3 \, {\left (x^{2} + 5 \, x\right )} \log \left (2 \, \log \left (16 \, x + 3 \, \log \relax (x)\right ) - 2 \, \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 101, normalized size = 4.59
method | result | size |
risch | \(\left (3 x^{2}+15 x \right ) \ln \left (8 \ln \relax (2)-2 \ln \left (\ln \relax (x )\right )+2 \ln \left (\frac {3 \ln \relax (x )}{16}+x \right )-i \pi \,\mathrm {csgn}\left (\frac {i \left (\frac {3 \ln \relax (x )}{16}+x \right )}{\ln \relax (x )}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\frac {3 \ln \relax (x )}{16}+x \right )}{\ln \relax (x )}\right )+\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\frac {3 \ln \relax (x )}{16}+x \right )}{\ln \relax (x )}\right )+\mathrm {csgn}\left (i \left (\frac {3 \ln \relax (x )}{16}+x \right )\right )\right )\right )\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 38, normalized size = 1.73 \begin {gather*} 3 \, x^{2} \log \relax (2) + 15 \, x \log \relax (2) + 3 \, {\left (x^{2} + 5 \, x\right )} \log \left (\log \left (16 \, x + 3 \, \log \relax (x)\right ) - \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.59, size = 28, normalized size = 1.27 \begin {gather*} \left (3\,x^2+15\,x\right )\,\left (\ln \relax (2)+\ln \left (\ln \left (\frac {16\,x+3\,\ln \relax (x)}{\ln \relax (x)}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.45, size = 24, normalized size = 1.09 \begin {gather*} \left (3 x^{2} + 15 x\right ) \log {\left (2 \log {\left (\frac {16 x + 3 \log {\relax (x )}}{\log {\relax (x )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________