Optimal. Leaf size=22 \[ \log \left (16+\frac {2 e^{-x}}{-5-3 x}-\frac {3}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x^2+6 x^3+e^x \left (75+90 x+27 x^2\right )}{-10 x^2-6 x^3+e^x \left (-75 x+310 x^2+453 x^3+144 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x^2-6 x^3-e^x \left (75+90 x+27 x^2\right )}{x (5+3 x) \left (15 e^x+2 x-71 e^x x-48 e^x x^2\right )} \, dx\\ &=\int \left (\frac {3}{x (-3+16 x)}+\frac {2 \left (15-15 x+119 x^2+48 x^3\right )}{(5+3 x) (-3+16 x) \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right )}\right ) \, dx\\ &=2 \int \frac {15-15 x+119 x^2+48 x^3}{(5+3 x) (-3+16 x) \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right )} \, dx+3 \int \frac {1}{x (-3+16 x)} \, dx\\ &=2 \int \left (\frac {1}{-15 e^x-2 x+71 e^x x+48 e^x x^2}+\frac {x}{-15 e^x-2 x+71 e^x x+48 e^x x^2}-\frac {5}{(5+3 x) \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right )}+\frac {3}{(-3+16 x) \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right )}\right ) \, dx+16 \int \frac {1}{-3+16 x} \, dx-\int \frac {1}{x} \, dx\\ &=\log (3-16 x)-\log (x)+2 \int \frac {1}{-15 e^x-2 x+71 e^x x+48 e^x x^2} \, dx+2 \int \frac {x}{-15 e^x-2 x+71 e^x x+48 e^x x^2} \, dx+6 \int \frac {1}{(-3+16 x) \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right )} \, dx-10 \int \frac {1}{(5+3 x) \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.29, size = 52, normalized size = 2.36 \begin {gather*} -x+\log (3-16 x)-\log (x)-\log ((3-16 x) (5+3 x))+\log \left (-15 e^x-2 x+71 e^x x+48 e^x x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 45, normalized size = 2.05 \begin {gather*} -x + \log \left (16 \, x - 3\right ) - \log \relax (x) + \log \left (\frac {{\left (48 \, x^{2} + 71 \, x - 15\right )} e^{x} - 2 \, x}{48 \, x^{2} + 71 \, x - 15}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 48, normalized size = 2.18 \begin {gather*} -x + \log \left (48 \, x^{2} e^{x} + 71 \, x e^{x} - 2 \, x - 15 \, e^{x}\right ) - \log \left (48 \, x^{2} + 71 \, x - 15\right ) + \log \left (16 \, x - 3\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 34, normalized size = 1.55
method | result | size |
risch | \(-\ln \relax (x )+\ln \left (16 x -3\right )-x +\ln \left ({\mathrm e}^{x}-\frac {2 x}{48 x^{2}+71 x -15}\right )\) | \(34\) |
norman | \(-x -\ln \relax (x )-\ln \left (3 x +5\right )+\ln \left (48 \,{\mathrm e}^{x} x^{2}+71 \,{\mathrm e}^{x} x -2 x -15 \,{\mathrm e}^{x}\right )\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 45, normalized size = 2.05 \begin {gather*} -x + \log \left (16 \, x - 3\right ) - \log \relax (x) + \log \left (\frac {{\left (48 \, x^{2} + 71 \, x - 15\right )} e^{x} - 2 \, x}{48 \, x^{2} + 71 \, x - 15}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.07, size = 35, normalized size = 1.59 \begin {gather*} \ln \left (48\,x^2\,{\mathrm {e}}^x-15\,{\mathrm {e}}^x-2\,x+71\,x\,{\mathrm {e}}^x\right )-\ln \left (x+\frac {5}{3}\right )-x-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 29, normalized size = 1.32 \begin {gather*} - x - \log {\relax (x )} + \log {\left (x - \frac {3}{16} \right )} + \log {\left (- \frac {2 x}{48 x^{2} + 71 x - 15} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________