Optimal. Leaf size=32 \[ e^{-x+\frac {-x+x \log (3)}{4 \log \left (5+\frac {x}{5+x+\log (x)}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 7.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-x+x \log (3)-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) \left (4 x-4 x \log (3)+(x-x \log (3)) \log (x)+\left (-125-55 x-6 x^2+\left (125+55 x+6 x^2\right ) \log (3)+(-50-11 x+(50+11 x) \log (3)) \log (x)+(-5+5 \log (3)) \log ^2(x)\right ) \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )+\left (-500-220 x-24 x^2+(-200-44 x) \log (x)-20 \log ^2(x)\right ) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )\right )}{\left (500+220 x+24 x^2+(200+44 x) \log (x)+20 \log ^2(x)\right ) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-x+x \log (3)-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) \left (x (4-4 \log (3))+(x-x \log (3)) \log (x)+\left (-125-55 x-6 x^2+\left (125+55 x+6 x^2\right ) \log (3)+(-50-11 x+(50+11 x) \log (3)) \log (x)+(-5+5 \log (3)) \log ^2(x)\right ) \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )+\left (-500-220 x-24 x^2+(-200-44 x) \log (x)-20 \log ^2(x)\right ) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )\right )}{\left (500+220 x+24 x^2+(200+44 x) \log (x)+20 \log ^2(x)\right ) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx\\ &=\int \frac {\exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) \left (x (4-4 \log (3))+(x-x \log (3)) \log (x)+\left (-125-55 x-6 x^2+\left (125+55 x+6 x^2\right ) \log (3)+(-50-11 x+(50+11 x) \log (3)) \log (x)+(-5+5 \log (3)) \log ^2(x)\right ) \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )+\left (-500-220 x-24 x^2+(-200-44 x) \log (x)-20 \log ^2(x)\right ) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )\right )}{\left (500+220 x+24 x^2+(200+44 x) \log (x)+20 \log ^2(x)\right ) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx\\ &=\int \left (-\exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )-\frac {\exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) x (-1+\log (3)) (4+\log (x))}{4 (5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}+\frac {\exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) (-1+\log (3))}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) \, dx\\ &=\frac {1}{4} (1-\log (3)) \int \frac {\exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) x (4+\log (x))}{(5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx+\frac {1}{4} (-1+\log (3)) \int \frac {\exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx-\int \exp \left (\frac {-x (1-\log (3))-4 x \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) \, dx\\ &=\frac {1}{4} (1-\log (3)) \int \frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) x (4+\log (x))}{(5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx+\frac {1}{4} (-1+\log (3)) \int \frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right )}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx-\int \exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) \, dx\\ &=\frac {1}{4} (1-\log (3)) \int \left (\frac {4 \exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) x}{(5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}+\frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) x \log (x)}{(5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right ) \, dx+\frac {1}{4} (-1+\log (3)) \int \frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right )}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx-\int \exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) \, dx\\ &=\frac {1}{4} (1-\log (3)) \int \frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) x \log (x)}{(5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx+(1-\log (3)) \int \frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) x}{(5+x+\log (x)) (25+6 x+5 \log (x)) \log ^2\left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx+\frac {1}{4} (-1+\log (3)) \int \frac {\exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right )}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )} \, dx-\int \exp \left (\frac {1}{4} x \left (-4+\frac {-1+\log (3)}{\log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 35, normalized size = 1.09 \begin {gather*} e^{-x+\frac {x (-1+\log (3))}{4 \log \left (\frac {25+6 x+5 \log (x)}{5+x+\log (x)}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 52, normalized size = 1.62 \begin {gather*} e^{\left (\frac {x \log \relax (3) - 4 \, x \log \left (\frac {6 \, x + 5 \, \log \relax (x) + 25}{x + \log \relax (x) + 5}\right ) - x}{4 \, \log \left (\frac {6 \, x + 5 \, \log \relax (x) + 25}{x + \log \relax (x) + 5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 9.96, size = 81, normalized size = 2.53 \begin {gather*} e^{\left (-x + \frac {x \log \relax (3)}{4 \, \log \left (\frac {6 \, x}{x + \log \relax (x) + 5} + \frac {5 \, \log \relax (x)}{x + \log \relax (x) + 5} + \frac {25}{x + \log \relax (x) + 5}\right )} - \frac {x}{4 \, \log \left (\frac {6 \, x}{x + \log \relax (x) + 5} + \frac {5 \, \log \relax (x)}{x + \log \relax (x) + 5} + \frac {25}{x + \log \relax (x) + 5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 47.45, size = 338, normalized size = 10.56
method | result | size |
risch | \({\mathrm e}^{-\frac {x \left (-2 i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right )^{3} \pi +2 i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{5+\ln \relax (x )+x}\right ) \pi +2 i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right )^{2} \mathrm {csgn}\left (i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )\right ) \pi -2 i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right ) \mathrm {csgn}\left (\frac {i}{5+\ln \relax (x )+x}\right ) \mathrm {csgn}\left (i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )\right ) \pi +4 \ln \relax (2)+3 \ln \relax (3)-4 \ln \left (5+\ln \relax (x )+x \right )+4 \ln \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )+1\right )}{2 \left (-i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right )^{3} \pi +i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{5+\ln \relax (x )+x}\right ) \pi +i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right )^{2} \mathrm {csgn}\left (i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )\right ) \pi -i \mathrm {csgn}\left (\frac {i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )}{5+\ln \relax (x )+x}\right ) \mathrm {csgn}\left (\frac {i}{5+\ln \relax (x )+x}\right ) \mathrm {csgn}\left (i \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )\right ) \pi +2 \ln \relax (2)+2 \ln \relax (3)-2 \ln \left (5+\ln \relax (x )+x \right )+2 \ln \left (\frac {5 \ln \relax (x )}{6}+x +\frac {25}{6}\right )\right )}}\) | \(338\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.50, size = 55, normalized size = 1.72 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{\frac {x\,\ln \relax (3)}{4\,\ln \left (\frac {6\,x+5\,\ln \relax (x)+25}{x+\ln \relax (x)+5}\right )}}\,{\mathrm {e}}^{-\frac {x}{4\,\ln \left (\frac {6\,x+5\,\ln \relax (x)+25}{x+\ln \relax (x)+5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 10.47, size = 49, normalized size = 1.53 \begin {gather*} e^{\frac {- x \log {\left (\frac {6 x + 5 \log {\relax (x )} + 25}{x + \log {\relax (x )} + 5} \right )} - \frac {x}{4} + \frac {x \log {\relax (3 )}}{4}}{\log {\left (\frac {6 x + 5 \log {\relax (x )} + 25}{x + \log {\relax (x )} + 5} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________