Optimal. Leaf size=25 \[ \frac {\left (-4-e^4+\frac {1}{5} (-5+x)\right ) x}{-27+e^{e^4}} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 28, normalized size of antiderivative = 1.12, number of steps used = 1, number of rules used = 1, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {9} \begin {gather*} -\frac {\left (5 \left (5+e^4\right )-2 x\right )^2}{20 \left (27-e^{e^4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\left (5 \left (5+e^4\right )-2 x\right )^2}{20 \left (27-e^{e^4}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 27, normalized size = 1.08 \begin {gather*} \frac {25 x+5 e^4 x-x^2}{135-5 e^{e^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^{2} - 5 \, x e^{4} - 25 \, x}{5 \, {\left (e^{\left (e^{4}\right )} - 27\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^{2} - 5 \, x e^{4} - 25 \, x}{5 \, {\left (e^{\left (e^{4}\right )} - 27\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.80
method | result | size |
gosper | \(-\frac {x \left (-x +5 \,{\mathrm e}^{4}+25\right )}{5 \left ({\mathrm e}^{{\mathrm e}^{4}}-27\right )}\) | \(20\) |
default | \(\frac {-5 x \,{\mathrm e}^{4}+x^{2}-25 x}{5 \,{\mathrm e}^{{\mathrm e}^{4}}-135}\) | \(23\) |
norman | \(\frac {x^{2}}{5 \,{\mathrm e}^{{\mathrm e}^{4}}-135}-\frac {\left (5+{\mathrm e}^{4}\right ) x}{{\mathrm e}^{{\mathrm e}^{4}}-27}\) | \(28\) |
risch | \(-\frac {5 x \,{\mathrm e}^{4}}{5 \,{\mathrm e}^{{\mathrm e}^{4}}-135}+\frac {x^{2}}{5 \,{\mathrm e}^{{\mathrm e}^{4}}-135}-\frac {25 x}{5 \,{\mathrm e}^{{\mathrm e}^{4}}-135}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^{2} - 5 \, x e^{4} - 25 \, x}{5 \, {\left (e^{\left (e^{4}\right )} - 27\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.01, size = 21, normalized size = 0.84 \begin {gather*} \frac {{\left (5\,{\mathrm {e}}^4-2\,x+25\right )}^2}{4\,\left (5\,{\mathrm {e}}^{{\mathrm {e}}^4}-135\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 26, normalized size = 1.04 \begin {gather*} \frac {x^{2}}{-135 + 5 e^{e^{4}}} + \frac {x \left (- e^{4} - 5\right )}{-27 + e^{e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________