Optimal. Leaf size=31 \[ 6-\frac {3-e^{-1+2 x} x \left (e^{-2-x} x+\log (5)\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 35, normalized size of antiderivative = 1.13, number of steps used = 5, number of rules used = 3, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.064, Rules used = {6688, 2176, 2194} \begin {gather*} e^{x-3} (x+1)-e^{x-3}-\frac {3}{x}+\frac {1}{2} e^{2 x-1} \log (25) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3}{x^2}+e^{-3+x} (1+x)+e^{-1+2 x} \log (25)\right ) \, dx\\ &=-\frac {3}{x}+\log (25) \int e^{-1+2 x} \, dx+\int e^{-3+x} (1+x) \, dx\\ &=-\frac {3}{x}+e^{-3+x} (1+x)+\frac {1}{2} e^{-1+2 x} \log (25)-\int e^{-3+x} \, dx\\ &=-e^{-3+x}-\frac {3}{x}+e^{-3+x} (1+x)+\frac {1}{2} e^{-1+2 x} \log (25)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 0.84 \begin {gather*} -\frac {3}{x}+e^{-3+x} x+\frac {1}{2} e^{-1+2 x} \log (25) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 29, normalized size = 0.94 \begin {gather*} \frac {{\left (x^{2} e^{\left (x + 2\right )} + x e^{\left (2 \, x + 4\right )} \log \relax (5) - 3 \, e^{5}\right )} e^{\left (-5\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 29, normalized size = 0.94 \begin {gather*} \frac {{\left (x^{2} e^{\left (x + 1\right )} + x e^{\left (2 \, x + 3\right )} \log \relax (5) - 3 \, e^{4}\right )} e^{\left (-4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 22, normalized size = 0.71
method | result | size |
risch | \(-\frac {3}{x}+\ln \relax (5) {\mathrm e}^{2 x -1}+x \,{\mathrm e}^{x -3}\) | \(22\) |
default | \({\mathrm e}^{-1} \left ({\mathrm e}^{x} {\mathrm e}^{-2}+{\mathrm e}^{-2} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )-\frac {3 \,{\mathrm e}}{x}+\ln \relax (5) {\mathrm e}^{2 x}\right )\) | \(42\) |
norman | \(\frac {\left ({\mathrm e}^{-1} {\mathrm e}^{-2} x^{2} {\mathrm e}^{2 x}+{\mathrm e}^{-1} \ln \relax (5) x \,{\mathrm e}^{3 x}-3 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{x}\) | \(42\) |
meijerg | \(\frac {2 \ln \relax (5) {\mathrm e}^{-x +1+x \,{\mathrm e}^{-2}} \left (1-{\mathrm e}^{-x \,{\mathrm e}^{-2} \left (1-{\mathrm e}^{2}\right ) \left (1-\frac {2 \,{\mathrm e}^{2}}{1-{\mathrm e}^{2}}\right )}\right )}{\left (1-{\mathrm e}^{2}\right ) \left (1-\frac {2 \,{\mathrm e}^{2}}{1-{\mathrm e}^{2}}\right )}+3 \,{\mathrm e}^{-x -2+x \,{\mathrm e}^{-2}} \left (1-{\mathrm e}^{2}\right ) \left (\frac {{\mathrm e}^{2} \left (2-2 x \,{\mathrm e}^{-2} \left (1-{\mathrm e}^{2}\right )\right )}{2 x \left (1-{\mathrm e}^{2}\right )}-\frac {{\mathrm e}^{2-x \,{\mathrm e}^{-2} \left (1-{\mathrm e}^{2}\right )}}{x \left (1-{\mathrm e}^{2}\right )}+\ln \left (x \,{\mathrm e}^{-2} \left (1-{\mathrm e}^{2}\right )\right )+\expIntegralEi \left (1, x \,{\mathrm e}^{-2} \left (1-{\mathrm e}^{2}\right )\right )+3-\ln \relax (x )-\ln \left (1-{\mathrm e}^{2}\right )-\frac {{\mathrm e}^{2}}{x \left (1-{\mathrm e}^{2}\right )}\right )+\frac {{\mathrm e}^{-3-x +x \,{\mathrm e}^{-2}} \left (1-\frac {\left (2-2 x \left (2-{\mathrm e}^{-2}\right )\right ) {\mathrm e}^{x \left (2-{\mathrm e}^{-2}\right )}}{2}\right )}{\left (2-{\mathrm e}^{-2}\right )^{2}}-\frac {{\mathrm e}^{-3-x +x \,{\mathrm e}^{-2}} \left (1-{\mathrm e}^{x \left (2-{\mathrm e}^{-2}\right )}\right )}{2-{\mathrm e}^{-2}}\) | \(272\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 27, normalized size = 0.87 \begin {gather*} {\left (x - 1\right )} e^{\left (x - 3\right )} + e^{\left (2 \, x - 1\right )} \log \relax (5) - \frac {3}{x} + e^{\left (x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 21, normalized size = 0.68 \begin {gather*} x\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x-\frac {3}{x}+{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-1}\,\ln \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 31, normalized size = 1.00 \begin {gather*} \frac {e x \sqrt {e^{2 x}} + e^{3} e^{2 x} \log {\relax (5 )}}{e^{4}} - \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________