Optimal. Leaf size=26 \[ e^{x^2} \left (-4+2 x+\left (-e^5-e^x+x\right ) \log (3)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.29, antiderivative size = 38, normalized size of antiderivative = 1.46, number of steps used = 2, number of rules used = 2, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6688, 2288} \begin {gather*} \frac {e^{x^2} \left (x^2 (4+\log (9))-x \left (e^x \log (9)+8+e^5 \log (9)\right )\right )}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{x^2} \left (2 \left (1+\frac {\log (3)}{2}\right )-e^x \log (3)+x^2 (4+\log (9))-x \left (8+e^5 \log (9)+e^x \log (9)\right )\right ) \, dx\\ &=\frac {e^{x^2} \left (x^2 (4+\log (9))-x \left (8+e^5 \log (9)+e^x \log (9)\right )\right )}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 31, normalized size = 1.19 \begin {gather*} \frac {1}{2} e^{x^2} \left (-8-e^5 \log (9)-e^x \log (9)+x (4+\log (9))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 26, normalized size = 1.00 \begin {gather*} e^{\left (x^{2} + \log \left ({\left (x - e^{5}\right )} \log \relax (3) - e^{x} \log \relax (3) + 2 \, x - 4\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 42, normalized size = 1.62 \begin {gather*} x e^{\left (x^{2}\right )} \log \relax (3) + 2 \, x e^{\left (x^{2}\right )} - e^{\left (x^{2} + x\right )} \log \relax (3) - e^{\left (x^{2} + 5\right )} \log \relax (3) - 4 \, e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 26, normalized size = 1.00
method | result | size |
risch | \(\left (-\ln \relax (3) {\mathrm e}^{x}+\left (-{\mathrm e}^{5}+x \right ) \ln \relax (3)+2 x -4\right ) {\mathrm e}^{x^{2}}\) | \(26\) |
norman | \({\mathrm e}^{\ln \left (-\ln \relax (3) {\mathrm e}^{x}+\left (-{\mathrm e}^{5}+x \right ) \ln \relax (3)+2 x -4\right )+x^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 126, normalized size = 4.85 \begin {gather*} \frac {1}{2} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + \frac {1}{2} i\right ) e^{\left (-\frac {1}{4}\right )} \log \relax (3) + \frac {1}{2} \, {\left (\frac {\sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 1\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} \log \relax (3) - \frac {1}{2} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) \log \relax (3) + 2 \, x e^{\left (x^{2}\right )} + \frac {1}{2} \, {\left (2 \, x e^{\left (x^{2}\right )} + i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right )\right )} \log \relax (3) - e^{\left (x^{2} + 5\right )} \log \relax (3) - 4 \, e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\ln \left (2\,x+\ln \relax (3)\,\left (x-{\mathrm {e}}^5\right )-{\mathrm {e}}^x\,\ln \relax (3)-4\right )+x^2}\,\left (\ln \relax (3)\,\left (2\,x^2-2\,{\mathrm {e}}^5\,x+1\right )-8\,x+4\,x^2-{\mathrm {e}}^x\,\ln \relax (3)\,\left (2\,x+1\right )+2\right )}{2\,x+\ln \relax (3)\,\left (x-{\mathrm {e}}^5\right )-{\mathrm {e}}^x\,\ln \relax (3)-4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 27, normalized size = 1.04 \begin {gather*} \left (x \log {\relax (3 )} + 2 x - e^{x} \log {\relax (3 )} - e^{5} \log {\relax (3 )} - 4\right ) e^{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________