Optimal. Leaf size=30 \[ 6+e^{e^{-1-x}}+x+\frac {1}{5} \left (-e^x-e^{2 x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 3, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {12, 2282, 2194} \begin {gather*} \frac {6 x}{5}+e^{e^{-x-1}}-\frac {e^x}{5}-\frac {e^{2 x}}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (6-5 e^{-1+e^{-1-x}-x}-e^x-2 e^{2 x}\right ) \, dx\\ &=\frac {6 x}{5}-\frac {\int e^x \, dx}{5}-\frac {2}{5} \int e^{2 x} \, dx-\int e^{-1+e^{-1-x}-x} \, dx\\ &=-\frac {e^x}{5}-\frac {e^{2 x}}{5}+\frac {6 x}{5}+\operatorname {Subst}\left (\int e^{-1+\frac {x}{e}} \, dx,x,e^{-x}\right )\\ &=e^{e^{-1-x}}-\frac {e^x}{5}-\frac {e^{2 x}}{5}+\frac {6 x}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 31, normalized size = 1.03 \begin {gather*} \frac {1}{5} \left (5 e^{e^{-1-x}}-e^x-e^{2 x}+6 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 36, normalized size = 1.20 \begin {gather*} \frac {6}{5} \, x + e^{\left (-{\left ({\left (x + 1\right )} e^{\left (x + 1\right )} - 1\right )} e^{\left (-x - 1\right )} + x + 1\right )} - \frac {1}{5} \, e^{\left (2 \, x\right )} - \frac {1}{5} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 21, normalized size = 0.70 \begin {gather*} \frac {6}{5} \, x - \frac {1}{5} \, e^{\left (2 \, x\right )} - \frac {1}{5} \, e^{x} + e^{\left (e^{\left (-x - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.73
method | result | size |
default | \(\frac {6 x}{5}+{\mathrm e}^{{\mathrm e}^{-x -1}}-\frac {{\mathrm e}^{x}}{5}-\frac {{\mathrm e}^{2 x}}{5}\) | \(22\) |
risch | \(\frac {6 x}{5}+{\mathrm e}^{{\mathrm e}^{-x -1}}-\frac {{\mathrm e}^{x}}{5}-\frac {{\mathrm e}^{2 x}}{5}\) | \(22\) |
norman | \(\left ({\mathrm e}^{-1} {\mathrm e} \,{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{-1} {\mathrm e}^{-x}}-\frac {{\mathrm e}^{2 x}}{5}-\frac {{\mathrm e}^{3 x}}{5}+\frac {6 \,{\mathrm e}^{x} x}{5}\right ) {\mathrm e}^{-x}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 21, normalized size = 0.70 \begin {gather*} \frac {6}{5} \, x - \frac {1}{5} \, e^{\left (2 \, x\right )} - \frac {1}{5} \, e^{x} + e^{\left (e^{\left (-x - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.04, size = 22, normalized size = 0.73 \begin {gather*} \frac {6\,x}{5}-\frac {{\mathrm {e}}^{2\,x}}{5}+{\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-1}}-\frac {{\mathrm {e}}^x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 26, normalized size = 0.87 \begin {gather*} \frac {6 x}{5} - \frac {e^{2 x}}{5} - \frac {e^{x}}{5} + e^{\frac {e^{- x}}{e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________