Optimal. Leaf size=25 \[ (4+x) \left (2+2 x+\log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16-76 x-52 x^2+22 x^4+8 x^5+\left (-40 x-26 x^2-4 x^3+10 x^4+4 x^5\right ) \log \left (\frac {4+x-x^3}{x}\right )+\left (-8 x-2 x^2+2 x^4+\left (-4 x-x^2+x^4\right ) \log \left (\frac {4+x-x^3}{x}\right )\right ) \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}{-8 x-2 x^2+2 x^4+\left (-4 x-x^2+x^4\right ) \log \left (\frac {4+x-x^3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16+76 x+52 x^2-22 x^4-8 x^5-\left (-40 x-26 x^2-4 x^3+10 x^4+4 x^5\right ) \log \left (\frac {4+x-x^3}{x}\right )-\left (-8 x-2 x^2+2 x^4+\left (-4 x-x^2+x^4\right ) \log \left (\frac {4+x-x^3}{x}\right )\right ) \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}{x \left (4+x-x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx\\ &=\int \left (-\frac {76}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {16}{x \left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}-\frac {52 x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {22 x^3}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {8 x^4}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {2 (5+2 x) \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )}+\log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )\right ) \, dx\\ &=2 \int \frac {(5+2 x) \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+8 \int \frac {x^4}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+16 \int \frac {1}{x \left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+22 \int \frac {x^3}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-52 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-76 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+\int \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right ) \, dx\\ &=2 \int \left (\frac {5 \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )}+\frac {2 x \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )}\right ) \, dx+8 \int \left (\frac {x}{2+\log \left (\frac {4+x-x^3}{x}\right )}+\frac {x (4+x)}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}\right ) \, dx+16 \int \left (-\frac {1}{4 x \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {-1+x^2}{4 \left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}\right ) \, dx+22 \int \left (\frac {1}{2+\log \left (\frac {4+x-x^3}{x}\right )}+\frac {4+x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}\right ) \, dx-52 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-76 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+\int \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right ) \, dx\\ &=-\left (4 \int \frac {1}{x \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx\right )+4 \int \frac {-1+x^2}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+4 \int \frac {x \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+8 \int \frac {x}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+8 \int \frac {x (4+x)}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+10 \int \frac {\log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+22 \int \frac {1}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+22 \int \frac {4+x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-52 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-76 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+\int \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right ) \, dx\\ &=-\left (4 \int \frac {1}{x \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx\right )+4 \int \frac {x \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+4 \int \left (-\frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {x^2}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}\right ) \, dx+8 \int \frac {x}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+8 \int \left (\frac {4 x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {x^2}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}\right ) \, dx+10 \int \frac {\log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+22 \int \frac {1}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+22 \int \left (\frac {4}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}+\frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )}\right ) \, dx-52 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-76 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+\int \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right ) \, dx\\ &=-\left (4 \int \frac {1}{x \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx\right )-4 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+4 \int \frac {x^2}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+4 \int \frac {x \log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+8 \int \frac {x}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+8 \int \frac {x^2}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+10 \int \frac {\log \left (1+\frac {4}{x}-x^2\right )}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+22 \int \frac {1}{2+\log \left (\frac {4+x-x^3}{x}\right )} \, dx+22 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+32 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-52 \int \frac {x}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx-76 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+88 \int \frac {1}{\left (-4-x+x^3\right ) \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )} \, dx+\int \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 45, normalized size = 1.80 \begin {gather*} 10 x+2 x^2+4 \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right )+x \log \left (2+\log \left (\frac {4+x-x^3}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 1.20 \begin {gather*} 2 \, x^{2} + {\left (x + 4\right )} \log \left (\log \left (-\frac {x^{3} - x - 4}{x}\right ) + 2\right ) + 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 46, normalized size = 1.84 \begin {gather*} 2 \, x^{2} + x \log \left (\log \left (-\frac {x^{3} - x - 4}{x}\right ) + 2\right ) + 10 \, x + 4 \, \log \left (\log \left (-x^{3} + x + 4\right ) - \log \relax (x) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (x^{4}-x^{2}-4 x \right ) \ln \left (\frac {-x^{3}+x +4}{x}\right )+2 x^{4}-2 x^{2}-8 x \right ) \ln \left (\ln \left (\frac {-x^{3}+x +4}{x}\right )+2\right )+\left (4 x^{5}+10 x^{4}-4 x^{3}-26 x^{2}-40 x \right ) \ln \left (\frac {-x^{3}+x +4}{x}\right )+8 x^{5}+22 x^{4}-52 x^{2}-76 x +16}{\left (x^{4}-x^{2}-4 x \right ) \ln \left (\frac {-x^{3}+x +4}{x}\right )+2 x^{4}-2 x^{2}-8 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 29, normalized size = 1.16 \begin {gather*} 2 \, x^{2} + {\left (x + 4\right )} \log \left (\log \left (-x^{3} + x + 4\right ) - \log \relax (x) + 2\right ) + 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 45, normalized size = 1.80 \begin {gather*} 10\,x+4\,\ln \left (\ln \left (\frac {-x^3+x+4}{x}\right )+2\right )+x\,\ln \left (\ln \left (\frac {-x^3+x+4}{x}\right )+2\right )+2\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.11, size = 37, normalized size = 1.48 \begin {gather*} 2 x^{2} + x \log {\left (\log {\left (\frac {- x^{3} + x + 4}{x} \right )} + 2 \right )} + 10 x + 4 \log {\left (\log {\left (\frac {- x^{3} + x + 4}{x} \right )} + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________