Optimal. Leaf size=27 \[ \frac {16 \left (x^2+\frac {-3+x^2}{-x+\log (5 x)}\right )}{225 x^6} \]
________________________________________________________________________________________
Rubi [F] time = 0.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48-336 x-16 x^2+80 x^3-64 x^4+\left (288-64 x^2+128 x^3\right ) \log (5 x)-64 x^2 \log ^2(5 x)}{225 x^9-450 x^8 \log (5 x)+225 x^7 \log ^2(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {48-336 x-16 x^2+80 x^3-64 x^4+\left (288-64 x^2+128 x^3\right ) \log (5 x)-64 x^2 \log ^2(5 x)}{225 x^7 (x-\log (5 x))^2} \, dx\\ &=\frac {1}{225} \int \frac {48-336 x-16 x^2+80 x^3-64 x^4+\left (288-64 x^2+128 x^3\right ) \log (5 x)-64 x^2 \log ^2(5 x)}{x^7 (x-\log (5 x))^2} \, dx\\ &=\frac {1}{225} \int \left (-\frac {64}{x^5}+\frac {16 \left (3-3 x-x^2+x^3\right )}{x^7 (x-\log (5 x))^2}+\frac {32 \left (-9+2 x^2\right )}{x^7 (x-\log (5 x))}\right ) \, dx\\ &=\frac {16}{225 x^4}+\frac {16}{225} \int \frac {3-3 x-x^2+x^3}{x^7 (x-\log (5 x))^2} \, dx+\frac {32}{225} \int \frac {-9+2 x^2}{x^7 (x-\log (5 x))} \, dx\\ &=\frac {16}{225 x^4}+\frac {16}{225} \int \left (\frac {3}{x^7 (x-\log (5 x))^2}-\frac {3}{x^6 (x-\log (5 x))^2}-\frac {1}{x^5 (x-\log (5 x))^2}+\frac {1}{x^4 (x-\log (5 x))^2}\right ) \, dx+\frac {32}{225} \int \left (-\frac {9}{x^7 (x-\log (5 x))}+\frac {2}{x^5 (x-\log (5 x))}\right ) \, dx\\ &=\frac {16}{225 x^4}-\frac {16}{225} \int \frac {1}{x^5 (x-\log (5 x))^2} \, dx+\frac {16}{225} \int \frac {1}{x^4 (x-\log (5 x))^2} \, dx+\frac {16}{75} \int \frac {1}{x^7 (x-\log (5 x))^2} \, dx-\frac {16}{75} \int \frac {1}{x^6 (x-\log (5 x))^2} \, dx+\frac {64}{225} \int \frac {1}{x^5 (x-\log (5 x))} \, dx-\frac {32}{25} \int \frac {1}{x^7 (x-\log (5 x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.81, size = 31, normalized size = 1.15 \begin {gather*} -\frac {16}{225} \left (-\frac {1}{x^4}+\frac {3-x^2}{x^6 (-x+\log (5 x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 36, normalized size = 1.33 \begin {gather*} \frac {16 \, {\left (x^{3} - x^{2} \log \left (5 \, x\right ) - x^{2} + 3\right )}}{225 \, {\left (x^{7} - x^{6} \log \left (5 \, x\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 28, normalized size = 1.04 \begin {gather*} -\frac {16 \, {\left (x^{2} - 3\right )}}{225 \, {\left (x^{7} - x^{6} \log \left (5 \, x\right )\right )}} + \frac {16}{225 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.00
method | result | size |
risch | \(\frac {16}{225 x^{4}}-\frac {16 \left (x^{2}-3\right )}{225 x^{6} \left (x -\ln \left (5 x \right )\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.96, size = 43, normalized size = 1.59 \begin {gather*} \frac {16 \, {\left (x^{3} - x^{2} {\left (\log \relax (5) + 1\right )} - x^{2} \log \relax (x) + 3\right )}}{225 \, {\left (x^{7} - x^{6} \log \relax (5) - x^{6} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 28, normalized size = 1.04 \begin {gather*} \frac {16}{225\,x^4}-\frac {\frac {16\,x^2}{225}-\frac {16}{75}}{x^6\,\left (x-\ln \left (5\,x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 27, normalized size = 1.00 \begin {gather*} \frac {16 x^{2} - 48}{- 225 x^{7} + 225 x^{6} \log {\left (5 x \right )}} + \frac {16}{225 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________