Optimal. Leaf size=22 \[ \frac {e^{e^{-4-x+\frac {2 e^2}{\log (5)}}}}{x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 29, normalized size of antiderivative = 1.32, number of steps used = 1, number of rules used = 1, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2288} \begin {gather*} \frac {e^{e^{\frac {2 e^2}{\log (5)}} 5^{-\frac {x+4}{\log (5)}}}}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{5^{-\frac {4+x}{\log (5)}} e^{\frac {2 e^2}{\log (5)}}}}{x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^{e^{-4-x+\frac {2 e^2}{\log (5)}}}}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 23, normalized size = 1.05 \begin {gather*} \frac {e^{\left (e^{\left (-\frac {{\left (x + 4\right )} \log \relax (5) - 2 \, e^{2}}{\log \relax (5)}\right )}\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 26, normalized size = 1.18
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{\frac {-x \ln \relax (5)+2 \,{\mathrm e}^{2}-4 \ln \relax (5)}{\ln \relax (5)}}}}{x^{3}}\) | \(26\) |
norman | \(\frac {{\mathrm e}^{{\mathrm e}^{\frac {\left (-x -4\right ) \ln \relax (5)+2 \,{\mathrm e}^{2}}{\ln \relax (5)}}}}{x^{3}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {{\left (x e^{\left (-\frac {{\left (x + 4\right )} \log \relax (5) - 2 \, e^{2}}{\log \relax (5)}\right )} + 3\right )} e^{\left (e^{\left (-\frac {{\left (x + 4\right )} \log \relax (5) - 2 \, e^{2}}{\log \relax (5)}\right )}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 21, normalized size = 0.95 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^2}{\ln \relax (5)}}}}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^{e^{\frac {\left (- x - 4\right ) \log {\relax (5 )} + 2 e^{2}}{\log {\relax (5 )}}}}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________