Optimal. Leaf size=25 \[ 3+x-x^2 \left (x+3 e^{4 x} \left (1+x+x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.51, antiderivative size = 87, normalized size of antiderivative = 3.48, number of steps used = 50, number of rules used = 3, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2196, 2176, 2194} \begin {gather*} -9 e^{8 x} x^6-6 e^{4 x} x^5-18 e^{8 x} x^5-6 e^{4 x} x^4-27 e^{8 x} x^4-x^4-6 e^{4 x} x^3-18 e^{8 x} x^3-9 e^{8 x} x^2+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-x^4+\int e^{4 x} \left (-18 x^2-48 x^3-54 x^4-24 x^5\right ) \, dx+\int e^{8 x} \left (-18 x-126 x^2-252 x^3-306 x^4-198 x^5-72 x^6\right ) \, dx\\ &=x-x^4+\int \left (-18 e^{4 x} x^2-48 e^{4 x} x^3-54 e^{4 x} x^4-24 e^{4 x} x^5\right ) \, dx+\int \left (-18 e^{8 x} x-126 e^{8 x} x^2-252 e^{8 x} x^3-306 e^{8 x} x^4-198 e^{8 x} x^5-72 e^{8 x} x^6\right ) \, dx\\ &=x-x^4-18 \int e^{8 x} x \, dx-18 \int e^{4 x} x^2 \, dx-24 \int e^{4 x} x^5 \, dx-48 \int e^{4 x} x^3 \, dx-54 \int e^{4 x} x^4 \, dx-72 \int e^{8 x} x^6 \, dx-126 \int e^{8 x} x^2 \, dx-198 \int e^{8 x} x^5 \, dx-252 \int e^{8 x} x^3 \, dx-306 \int e^{8 x} x^4 \, dx\\ &=x-\frac {9}{4} e^{8 x} x-\frac {9}{2} e^{4 x} x^2-\frac {63}{4} e^{8 x} x^2-12 e^{4 x} x^3-\frac {63}{2} e^{8 x} x^3-x^4-\frac {27}{2} e^{4 x} x^4-\frac {153}{4} e^{8 x} x^4-6 e^{4 x} x^5-\frac {99}{4} e^{8 x} x^5-9 e^{8 x} x^6+\frac {9}{4} \int e^{8 x} \, dx+9 \int e^{4 x} x \, dx+30 \int e^{4 x} x^4 \, dx+\frac {63}{2} \int e^{8 x} x \, dx+36 \int e^{4 x} x^2 \, dx+54 \int e^{4 x} x^3 \, dx+54 \int e^{8 x} x^5 \, dx+\frac {189}{2} \int e^{8 x} x^2 \, dx+\frac {495}{4} \int e^{8 x} x^4 \, dx+153 \int e^{8 x} x^3 \, dx\\ &=\frac {9 e^{8 x}}{32}+x+\frac {9}{4} e^{4 x} x+\frac {27}{16} e^{8 x} x+\frac {9}{2} e^{4 x} x^2-\frac {63}{16} e^{8 x} x^2+\frac {3}{2} e^{4 x} x^3-\frac {99}{8} e^{8 x} x^3-x^4-6 e^{4 x} x^4-\frac {729}{32} e^{8 x} x^4-6 e^{4 x} x^5-18 e^{8 x} x^5-9 e^{8 x} x^6-\frac {9}{4} \int e^{4 x} \, dx-\frac {63}{16} \int e^{8 x} \, dx-18 \int e^{4 x} x \, dx-\frac {189}{8} \int e^{8 x} x \, dx-30 \int e^{4 x} x^3 \, dx-\frac {135}{4} \int e^{8 x} x^4 \, dx-\frac {81}{2} \int e^{4 x} x^2 \, dx-\frac {459}{8} \int e^{8 x} x^2 \, dx-\frac {495}{8} \int e^{8 x} x^3 \, dx\\ &=-\frac {9 e^{4 x}}{16}-\frac {27 e^{8 x}}{128}+x-\frac {9}{4} e^{4 x} x-\frac {81}{64} e^{8 x} x-\frac {45}{8} e^{4 x} x^2-\frac {711}{64} e^{8 x} x^2-6 e^{4 x} x^3-\frac {1287}{64} e^{8 x} x^3-x^4-6 e^{4 x} x^4-27 e^{8 x} x^4-6 e^{4 x} x^5-18 e^{8 x} x^5-9 e^{8 x} x^6+\frac {189}{64} \int e^{8 x} \, dx+\frac {9}{2} \int e^{4 x} \, dx+\frac {459}{32} \int e^{8 x} x \, dx+\frac {135}{8} \int e^{8 x} x^3 \, dx+\frac {81}{4} \int e^{4 x} x \, dx+\frac {45}{2} \int e^{4 x} x^2 \, dx+\frac {1485}{64} \int e^{8 x} x^2 \, dx\\ &=\frac {9 e^{4 x}}{16}+\frac {81 e^{8 x}}{512}+x+\frac {45}{16} e^{4 x} x+\frac {135}{256} e^{8 x} x-\frac {4203}{512} e^{8 x} x^2-6 e^{4 x} x^3-18 e^{8 x} x^3-x^4-6 e^{4 x} x^4-27 e^{8 x} x^4-6 e^{4 x} x^5-18 e^{8 x} x^5-9 e^{8 x} x^6-\frac {459}{256} \int e^{8 x} \, dx-\frac {81}{16} \int e^{4 x} \, dx-\frac {1485}{256} \int e^{8 x} x \, dx-\frac {405}{64} \int e^{8 x} x^2 \, dx-\frac {45}{4} \int e^{4 x} x \, dx\\ &=-\frac {45 e^{4 x}}{64}-\frac {135 e^{8 x}}{2048}+x-\frac {405 e^{8 x} x}{2048}-9 e^{8 x} x^2-6 e^{4 x} x^3-18 e^{8 x} x^3-x^4-6 e^{4 x} x^4-27 e^{8 x} x^4-6 e^{4 x} x^5-18 e^{8 x} x^5-9 e^{8 x} x^6+\frac {1485 \int e^{8 x} \, dx}{2048}+\frac {405}{256} \int e^{8 x} x \, dx+\frac {45}{16} \int e^{4 x} \, dx\\ &=\frac {405 e^{8 x}}{16384}+x-9 e^{8 x} x^2-6 e^{4 x} x^3-18 e^{8 x} x^3-x^4-6 e^{4 x} x^4-27 e^{8 x} x^4-6 e^{4 x} x^5-18 e^{8 x} x^5-9 e^{8 x} x^6-\frac {405 \int e^{8 x} \, dx}{2048}\\ &=x-9 e^{8 x} x^2-6 e^{4 x} x^3-18 e^{8 x} x^3-x^4-6 e^{4 x} x^4-27 e^{8 x} x^4-6 e^{4 x} x^5-18 e^{8 x} x^5-9 e^{8 x} x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 59, normalized size = 2.36 \begin {gather*} x-x^4-6 e^{4 x} \left (x^3+x^4+x^5\right )-18 e^{8 x} \left (\frac {x^2}{2}+x^3+\frac {3 x^4}{2}+x^5+\frac {x^6}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 51, normalized size = 2.04 \begin {gather*} -x^{4} - 9 \, {\left (x^{6} + 2 \, x^{5} + 3 \, x^{4} + 2 \, x^{3} + x^{2}\right )} e^{\left (8 \, x\right )} - 6 \, {\left (x^{5} + x^{4} + x^{3}\right )} e^{\left (4 \, x\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 51, normalized size = 2.04 \begin {gather*} -x^{4} - 9 \, {\left (x^{6} + 2 \, x^{5} + 3 \, x^{4} + 2 \, x^{3} + x^{2}\right )} e^{\left (8 \, x\right )} - 6 \, {\left (x^{5} + x^{4} + x^{3}\right )} e^{\left (4 \, x\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 60, normalized size = 2.40
method | result | size |
risch | \(\left (-9 x^{6}-18 x^{5}-27 x^{4}-18 x^{3}-9 x^{2}\right ) {\mathrm e}^{8 x}+\left (-6 x^{5}-6 x^{4}-6 x^{3}\right ) {\mathrm e}^{4 x}-x^{4}+x\) | \(60\) |
derivativedivides | \(x -x^{4}-6 x^{3} {\mathrm e}^{4 x}-6 x^{4} {\mathrm e}^{4 x}-6 \,{\mathrm e}^{4 x} x^{5}-9 \,{\mathrm e}^{8 x} x^{2}-18 \,{\mathrm e}^{8 x} x^{3}-27 x^{4} {\mathrm e}^{8 x}-18 \,{\mathrm e}^{8 x} x^{5}-9 \,{\mathrm e}^{8 x} x^{6}\) | \(96\) |
default | \(x -x^{4}-6 x^{3} {\mathrm e}^{4 x}-6 x^{4} {\mathrm e}^{4 x}-6 \,{\mathrm e}^{4 x} x^{5}-9 \,{\mathrm e}^{8 x} x^{2}-18 \,{\mathrm e}^{8 x} x^{3}-27 x^{4} {\mathrm e}^{8 x}-18 \,{\mathrm e}^{8 x} x^{5}-9 \,{\mathrm e}^{8 x} x^{6}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 51, normalized size = 2.04 \begin {gather*} -x^{4} - 9 \, {\left (x^{6} + 2 \, x^{5} + 3 \, x^{4} + 2 \, x^{3} + x^{2}\right )} e^{\left (8 \, x\right )} - 6 \, {\left (x^{5} + x^{4} + x^{3}\right )} e^{\left (4 \, x\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.01, size = 46, normalized size = 1.84 \begin {gather*} -x\,\left (x^2+x+1\right )\,\left (x+9\,x\,{\mathrm {e}}^{8\,x}+6\,x^2\,{\mathrm {e}}^{4\,x}+9\,x^2\,{\mathrm {e}}^{8\,x}+9\,x^3\,{\mathrm {e}}^{8\,x}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 58, normalized size = 2.32 \begin {gather*} - x^{4} + x + \left (- 6 x^{5} - 6 x^{4} - 6 x^{3}\right ) e^{4 x} + \left (- 9 x^{6} - 18 x^{5} - 27 x^{4} - 18 x^{3} - 9 x^{2}\right ) e^{8 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________