Optimal. Leaf size=33 \[ \frac {3 \left (\frac {x^2}{2+x}-\log (x)\right )}{x \left (-4+2 e^{-4+x}+3 x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 18.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48+12 x-48 x^2-9 x^3-9 x^4+e^{-4+x} \left (-24-24 x+6 x^2-12 x^3-6 x^4\right )+\left (-48+24 x+60 x^2+18 x^3+e^{-4+x} \left (24+48 x+30 x^2+6 x^3\right )\right ) \log (x)}{64 x^2-32 x^3-44 x^4+12 x^5+9 x^6+e^{-8+2 x} \left (16 x^2+16 x^3+4 x^4\right )+e^{-4+x} \left (-64 x^2-16 x^3+32 x^4+12 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^4 \left (-2 e^x \left (4+4 x-x^2+2 x^3+x^4\right )-e^4 \left (-16-4 x+16 x^2+3 x^3+3 x^4\right )+2 (2+x)^2 \left (e^x (1+x)+e^4 (-2+3 x)\right ) \log (x)\right )}{x^2 (2+x)^2 \left (2 e^x+e^4 (-4+3 x)\right )^2} \, dx\\ &=\left (3 e^4\right ) \int \frac {-2 e^x \left (4+4 x-x^2+2 x^3+x^4\right )-e^4 \left (-16-4 x+16 x^2+3 x^3+3 x^4\right )+2 (2+x)^2 \left (e^x (1+x)+e^4 (-2+3 x)\right ) \log (x)}{x^2 (2+x)^2 \left (2 e^x+e^4 (-4+3 x)\right )^2} \, dx\\ &=\left (3 e^4\right ) \int \left (\frac {e^4 (-7+3 x) \left (x^2-2 \log (x)-x \log (x)\right )}{x (2+x) \left (-4 e^4+2 e^x+3 e^4 x\right )^2}-\frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{x^2 (2+x)^2 \left (-4 e^4+2 e^x+3 e^4 x\right )}\right ) \, dx\\ &=-\left (\left (3 e^4\right ) \int \frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{x^2 (2+x)^2 \left (-4 e^4+2 e^x+3 e^4 x\right )} \, dx\right )+\left (3 e^8\right ) \int \frac {(-7+3 x) \left (x^2-2 \log (x)-x \log (x)\right )}{x (2+x) \left (-4 e^4+2 e^x+3 e^4 x\right )^2} \, dx\\ &=-\left (\left (3 e^4\right ) \int \left (\frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{4 x^2 \left (-4 e^4+2 e^x+3 e^4 x\right )}-\frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{4 x \left (-4 e^4+2 e^x+3 e^4 x\right )}+\frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{4 (2+x)^2 \left (-4 e^4+2 e^x+3 e^4 x\right )}+\frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{4 (2+x) \left (-4 e^4+2 e^x+3 e^4 x\right )}\right ) \, dx\right )+\left (3 e^8\right ) \int \left (-\frac {7 \left (x^2-2 \log (x)-x \log (x)\right )}{2 x \left (-4 e^4+2 e^x+3 e^4 x\right )^2}+\frac {13 \left (x^2-2 \log (x)-x \log (x)\right )}{2 (2+x) \left (-4 e^4+2 e^x+3 e^4 x\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \left (3 e^4\right ) \int \frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{x^2 \left (-4 e^4+2 e^x+3 e^4 x\right )} \, dx\right )+\frac {1}{4} \left (3 e^4\right ) \int \frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{x \left (-4 e^4+2 e^x+3 e^4 x\right )} \, dx-\frac {1}{4} \left (3 e^4\right ) \int \frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{(2+x)^2 \left (-4 e^4+2 e^x+3 e^4 x\right )} \, dx-\frac {1}{4} \left (3 e^4\right ) \int \frac {4+4 x-x^2+2 x^3+x^4-4 \log (x)-8 x \log (x)-5 x^2 \log (x)-x^3 \log (x)}{(2+x) \left (-4 e^4+2 e^x+3 e^4 x\right )} \, dx-\frac {1}{2} \left (21 e^8\right ) \int \frac {x^2-2 \log (x)-x \log (x)}{x \left (-4 e^4+2 e^x+3 e^4 x\right )^2} \, dx+\frac {1}{2} \left (39 e^8\right ) \int \frac {x^2-2 \log (x)-x \log (x)}{(2+x) \left (-4 e^4+2 e^x+3 e^4 x\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 42, normalized size = 1.27 \begin {gather*} -\frac {3 e^4 \left (-x^2+(2+x) \log (x)\right )}{x (2+x) \left (2 e^x+e^4 (-4+3 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 42, normalized size = 1.27 \begin {gather*} \frac {3 \, {\left (x^{2} - {\left (x + 2\right )} \log \relax (x)\right )}}{3 \, x^{3} + 2 \, x^{2} + 2 \, {\left (x^{2} + 2 \, x\right )} e^{\left (x - 4\right )} - 8 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 56, normalized size = 1.70 \begin {gather*} \frac {3 \, {\left (x^{2} e^{4} - x e^{4} \log \relax (x) - 2 \, e^{4} \log \relax (x)\right )}}{3 \, x^{3} e^{4} + 2 \, x^{2} e^{4} + 2 \, x^{2} e^{x} - 8 \, x e^{4} + 4 \, x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 43, normalized size = 1.30
method | result | size |
risch | \(-\frac {3 \ln \relax (x )}{x \left (3 x -4+2 \,{\mathrm e}^{x -4}\right )}+\frac {3 x}{\left (2+x \right ) \left (3 x -4+2 \,{\mathrm e}^{x -4}\right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 55, normalized size = 1.67 \begin {gather*} \frac {3 \, {\left (x^{2} e^{4} - {\left (x e^{4} + 2 \, e^{4}\right )} \log \relax (x)\right )}}{3 \, x^{3} e^{4} + 2 \, x^{2} e^{4} - 8 \, x e^{4} + 2 \, {\left (x^{2} + 2 \, x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 37, normalized size = 1.12 \begin {gather*} -\frac {3\,\left (2\,\ln \relax (x)+x\,\ln \relax (x)-x^2\right )}{x\,\left (x+2\right )\,\left (3\,x+2\,{\mathrm {e}}^{x-4}-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 42, normalized size = 1.27 \begin {gather*} \frac {3 x^{2} - 3 x \log {\relax (x )} - 6 \log {\relax (x )}}{3 x^{3} + 2 x^{2} - 8 x + \left (2 x^{2} + 4 x\right ) e^{x - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________