Optimal. Leaf size=20 \[ x+\frac {-8+e^x-\log (x)}{3 (9+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.47, antiderivative size = 41, normalized size of antiderivative = 2.05, number of steps used = 14, number of rules used = 9, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1594, 27, 12, 6742, 44, 43, 2197, 2314, 31} \begin {gather*} x+\frac {e^x}{3 (x+9)}-\frac {8}{3 (x+9)}+\frac {x \log (x)}{27 (x+9)}-\frac {\log (x)}{27} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 43
Rule 44
Rule 1594
Rule 2197
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-9+250 x+54 x^2+3 x^3+e^x \left (8 x+x^2\right )+x \log (x)}{x \left (243+54 x+3 x^2\right )} \, dx\\ &=\int \frac {-9+250 x+54 x^2+3 x^3+e^x \left (8 x+x^2\right )+x \log (x)}{3 x (9+x)^2} \, dx\\ &=\frac {1}{3} \int \frac {-9+250 x+54 x^2+3 x^3+e^x \left (8 x+x^2\right )+x \log (x)}{x (9+x)^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {250}{(9+x)^2}-\frac {9}{x (9+x)^2}+\frac {54 x}{(9+x)^2}+\frac {3 x^2}{(9+x)^2}+\frac {e^x (8+x)}{(9+x)^2}+\frac {\log (x)}{(9+x)^2}\right ) \, dx\\ &=-\frac {250}{3 (9+x)}+\frac {1}{3} \int \frac {e^x (8+x)}{(9+x)^2} \, dx+\frac {1}{3} \int \frac {\log (x)}{(9+x)^2} \, dx-3 \int \frac {1}{x (9+x)^2} \, dx+18 \int \frac {x}{(9+x)^2} \, dx+\int \frac {x^2}{(9+x)^2} \, dx\\ &=-\frac {250}{3 (9+x)}+\frac {e^x}{3 (9+x)}+\frac {x \log (x)}{27 (9+x)}-\frac {1}{27} \int \frac {1}{9+x} \, dx-3 \int \left (\frac {1}{81 x}-\frac {1}{9 (9+x)^2}-\frac {1}{81 (9+x)}\right ) \, dx+18 \int \left (-\frac {9}{(9+x)^2}+\frac {1}{9+x}\right ) \, dx+\int \left (1+\frac {81}{(9+x)^2}-\frac {18}{9+x}\right ) \, dx\\ &=x-\frac {8}{3 (9+x)}+\frac {e^x}{3 (9+x)}-\frac {\log (x)}{27}+\frac {x \log (x)}{27 (9+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 26, normalized size = 1.30 \begin {gather*} \frac {-8+e^x+27 x+3 x^2-\log (x)}{3 (9+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 23, normalized size = 1.15 \begin {gather*} \frac {3 \, x^{2} + 27 \, x + e^{x} - \log \relax (x) - 8}{3 \, {\left (x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 23, normalized size = 1.15 \begin {gather*} \frac {3 \, x^{2} + 27 \, x + e^{x} - \log \relax (x) - 8}{3 \, {\left (x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 1.10
method | result | size |
norman | \(\frac {x^{2}-\frac {\ln \relax (x )}{3}+\frac {251 x}{27}+\frac {{\mathrm e}^{x}}{3}}{x +9}\) | \(22\) |
risch | \(-\frac {\ln \relax (x )}{3 \left (x +9\right )}+\frac {3 x^{2}+27 x +{\mathrm e}^{x}-8}{3 x +27}\) | \(30\) |
default | \(\frac {x \ln \relax (x )}{27 x +243}+\frac {{\mathrm e}^{x}}{3 x +27}+x -\frac {8}{3 \left (x +9\right )}-\frac {\ln \relax (x )}{27}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \frac {8 \, e^{\left (-9\right )} E_{2}\left (-x - 9\right )}{3 \, {\left (x + 9\right )}} - \frac {\log \relax (x)}{3 \, {\left (x + 9\right )}} - \frac {8}{3 \, {\left (x + 9\right )}} + \frac {1}{3} \, \int \frac {x e^{x}}{x^{2} + 18 \, x + 81}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 19, normalized size = 0.95 \begin {gather*} x-\frac {\frac {\ln \relax (x)}{3}-\frac {{\mathrm {e}}^x}{3}+\frac {8}{3}}{x+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 24, normalized size = 1.20 \begin {gather*} x + \frac {e^{x}}{3 x + 27} - \frac {\log {\relax (x )}}{3 x + 27} - \frac {8}{3 x + 27} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________