Optimal. Leaf size=19 \[ \log \left (\frac {x}{7+e^x-\frac {\log ^2(x)}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-7 x+e^x \left (-x+x^2\right )-2 \log (x)+2 \log ^2(x)}{-7 x^2-e^x x^2+x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1-x}{x}+\frac {7 x^2+2 \log (x)-\log ^2(x)-x \log ^2(x)}{x \left (7 x+e^x x-\log ^2(x)\right )}\right ) \, dx\\ &=\int \frac {1-x}{x} \, dx+\int \frac {7 x^2+2 \log (x)-\log ^2(x)-x \log ^2(x)}{x \left (7 x+e^x x-\log ^2(x)\right )} \, dx\\ &=\int \left (-1+\frac {1}{x}\right ) \, dx+\int \left (\frac {7 x}{7 x+e^x x-\log ^2(x)}+\frac {2 \log (x)}{x \left (7 x+e^x x-\log ^2(x)\right )}-\frac {\log ^2(x)}{x \left (7 x+e^x x-\log ^2(x)\right )}+\frac {\log ^2(x)}{-7 x-e^x x+\log ^2(x)}\right ) \, dx\\ &=-x+\log (x)+2 \int \frac {\log (x)}{x \left (7 x+e^x x-\log ^2(x)\right )} \, dx+7 \int \frac {x}{7 x+e^x x-\log ^2(x)} \, dx-\int \frac {\log ^2(x)}{x \left (7 x+e^x x-\log ^2(x)\right )} \, dx+\int \frac {\log ^2(x)}{-7 x-e^x x+\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 23, normalized size = 1.21 \begin {gather*} 2 \log (x)-\log \left (7 x+e^x x-\log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 21, normalized size = 1.11 \begin {gather*} -\log \left (-x e^{x} + \log \relax (x)^{2} - 7 \, x\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 21, normalized size = 1.11 \begin {gather*} -\log \left (-x e^{x} + \log \relax (x)^{2} - 7 \, x\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.16
method | result | size |
risch | \(2 \ln \relax (x )-\ln \left (\ln \relax (x )^{2}-{\mathrm e}^{x} x -7 x \right )\) | \(22\) |
norman | \(2 \ln \relax (x )-\ln \left ({\mathrm e}^{x} x -\ln \relax (x )^{2}+7 x \right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 24, normalized size = 1.26 \begin {gather*} \log \relax (x) - \log \left (\frac {x e^{x} - \log \relax (x)^{2} + 7 \, x}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 22, normalized size = 1.16 \begin {gather*} 2\,\ln \relax (x)-\ln \left (-{\ln \relax (x)}^2+7\,x+x\,{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 17, normalized size = 0.89 \begin {gather*} \log {\relax (x )} - \log {\left (e^{x} + \frac {7 x - \log {\relax (x )}^{2}}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________