Optimal. Leaf size=21 \[ \frac {5 \log (2)}{1+e^{-x+\frac {8 \log (4)}{x}}} \]
________________________________________________________________________________________
Rubi [A] time = 1.25, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {6688, 12, 6711, 32} \begin {gather*} \frac {5 \log (2)}{4^{8/x} e^{-x}+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5\ 4^{8/x} e^x \log (2) \left (x^2+8 \log (4)\right )}{\left (4^{8/x}+e^x\right )^2 x^2} \, dx\\ &=(5 \log (2)) \int \frac {4^{8/x} e^x \left (x^2+8 \log (4)\right )}{\left (4^{8/x}+e^x\right )^2 x^2} \, dx\\ &=-\left ((5 \log (2)) \operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,4^{8/x} e^{-x}\right )\right )\\ &=\frac {5 \log (2)}{1+4^{8/x} e^{-x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 24, normalized size = 1.14 \begin {gather*} -\frac {5\ 4^{8/x} \log (2)}{4^{8/x}+e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 22, normalized size = 1.05 \begin {gather*} \frac {5 \, \log \relax (2)}{e^{\left (-\frac {x^{2} - 16 \, \log \relax (2)}{x}\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 22, normalized size = 1.05 \begin {gather*} \frac {5 \, \log \relax (2)}{e^{\left (-\frac {x^{2} - 16 \, \log \relax (2)}{x}\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.90
method | result | size |
risch | \(\frac {5 \ln \relax (2)}{65536^{\frac {1}{x}} {\mathrm e}^{-x}+1}\) | \(19\) |
norman | \(\frac {5 \ln \relax (2)}{{\mathrm e}^{\frac {16 \ln \relax (2)-x^{2}}{x}}+1}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.99, size = 18, normalized size = 0.86 \begin {gather*} \frac {5 \, e^{x} \log \relax (2)}{2^{\frac {16}{x}} + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 18, normalized size = 0.86 \begin {gather*} \frac {5\,{\mathrm {e}}^x\,\ln \relax (2)}{{\mathrm {e}}^x+2^{16/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.81 \begin {gather*} \frac {5 \log {\relax (2 )}}{e^{\frac {- x^{2} + 16 \log {\relax (2 )}}{x}} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________